More stories

  • in

    Three MIT students selected as inaugural MIT-Pillar AI Collective Fellows

    MIT-Pillar AI Collective has announced three inaugural fellows for the fall 2023 semester. With support from the program, the graduate students, who are in their final year of a master’s or PhD program, will conduct research in the areas of artificial intelligence, machine learning, and data science with the aim of commercializing their innovations.

    Launched by MIT’s School of Engineering and Pillar VC in 2022, the MIT-Pillar AI Collective supports faculty, postdocs, and students conducting research on AI, machine learning, and data science. Supported by a gift from Pillar VC and administered by the MIT Deshpande Center for Technological Innovation, the mission of the program is to advance research toward commercialization.

    The fall 2023 MIT-Pillar AI Collective Fellows are:

    Alexander Andonian SM ’21 is a PhD candidate in electrical engineering and computer science whose research interests lie in computer vision, deep learning, and artificial intelligence. More specifically, he is focused on building a generalist, multimodal AI scientist driven by generative vision-language model agents capable of proposing scientific hypotheses, running computational experiments, evaluating supporting evidence, and verifying conclusions in the same way as a human researcher or reviewer. Such an agent could be trained to optimally distill and communicate its findings for human consumption and comprehension. Andonian’s work holds the promise of creating a concrete foundation for rigorously building and holistically testing the next-generation autonomous AI agent for science. In addition to his research, Andonian is the CEO and co-founder of Reelize, a startup that offers a generative AI video tool that effortlessly turns long videos into short clips — and originated from his business coursework and was supported by MIT Sandbox. Andonian is also a founding AI researcher at Poly AI, an early-stage YC-backed startup building AI design tools. Andonian earned an SM from MIT and a BS in neuroscience, physics, and mathematics from Bates College.

    Daniel Magley is a PhD candidate in the Harvard-MIT Program in Health Sciences and Technology who is passionate about making a healthy, fully functioning mind and body a reality for all. His leading-edge research is focused on developing a swallowable wireless thermal imaging capsule that could be used in treating and monitoring inflammatory bowel diseases and their manifestations, such as Crohn’s disease. Providing increased sensitivity and eliminating the need for bowel preparation, the capsule has the potential to vastly improve treatment efficacy and overall patient experience in routine monitoring. The capsule has completed animal studies and is entering human studies at Mass General Brigham, where Magley leads a team of engineers in the hospital’s largest translational research lab, the Tearney Lab. Following the human pilot studies, the largest technological and regulatory risks will be cleared for translation. Magley will then begin focusing on a multi-site study to get the device into clinics, with the promise of benefiting patients across the country. Magley earned a BS in electrical engineering from Caltech.

    Madhumitha Ravichandra is a PhD candidate interested in advancing heat transfer and surface engineering techniques to enhance the safety and performance of nuclear energy systems and reduce their environmental impacts. Leveraging her deep knowledge of the integration of explainable AI with high-throughput autonomous experimentation, she seeks to transform the development of radiation-hardened (rad-hard) sensors, which could potentially withstand and function amidst radiation levels that would render conventional sensors useless. By integrating explainable AI with high-throughput autonomous experimentation, she aims to rapidly iterate designs, test under varied conditions, and ensure that the final product is both robust and transparent in its operations. Her work in this space could shift the paradigm in rad-hard sensor development, addressing a glaring void in the market and redefining standards, ensuring that nuclear and space applications are safer, more efficient, and at the cutting edge of technological progress. Ravichandran earned a BTech in mechanical engineering from SASTRA University, India. More

  • in

    MIT-Pillar AI Collective announces first seed grant recipients

    The MIT-Pillar AI Collective has announced its first six grant recipients. Students, alumni, and postdocs working on a broad range of topics in artificial intelligence, machine learning, and data science will receive funding and support for research projects that could translate into commercially viable products or companies. These grants are intended to help students explore commercial applications for their research, and eventually drive that commercialization through the creation of a startup.

    “These tremendous students and postdocs are working on projects that have the potential to be truly transformative across a diverse range of industries. It’s thrilling to think that the novel research these teams are conducting could lead to the founding of startups that revolutionize everything from drug delivery to video conferencing,” says Anantha Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science.

    Launched in September 2022, the MIT-Pillar AI Collective is a pilot program funded by a $1 million gift from Pillar VC that aims to cultivate prospective entrepreneurs and drive innovation in areas related to AI. Administered by the MIT Deshpande Center for Technological Innovation, the AI Collective centers on the market discovery process, advancing projects through market research, customer discovery, and prototyping. Graduate students and postdocs supported by the program work toward the development of minimum viable products.

    “In addition to funding, the MIT-Pillar AI Collective provides grant recipients with mentorship and guidance. With the rapid advancement of AI technologies, this type of support is critical to ensure students and postdocs are able to access the resources required to move quickly in this fast-pace environment,” says Jinane Abounadi, managing director of the MIT-Pillar AI Collective.

    The six inaugural recipients will receive support in identifying key milestones and advice from experienced entrepreneurs. The AI Collective assists seed grant recipients in gathering feedback from potential end-users, as well as getting insights from early-stage investors. The program also organizes community events, including a “Founder Talks” speaker series, and other team-building activities.   

    “Each one of these grant recipients exhibits an entrepreneurial spirit. It is exciting to provide support and guidance as they start a journey that could one day see them as founders and leaders of successful companies,” adds Jamie Goldstein ’89, founder of Pillar VC.

    The first cohort of grant recipients include the following projects:

    Predictive query interface

    Abdullah Alomar SM ’21, a PhD candidate studying electrical engineering and computer science, is building a predictive query interface for time series databases to better forecast demand and financial data. This user-friendly interface can help alleviate some of the bottlenecks and issues related to unwieldy data engineering processes while providing state-of-the-art statistical accuracy. Alomar is advised by Devavrat Shah, the Andrew (1956) and Erna Viterbi Professor at MIT.

    Design of light-activated drugs

    Simon Axelrod, a PhD candidate studying chemical physics at Harvard University, is combining AI with physics simulations to design light-activated drugs that could reduce side effects and improve effectiveness. Patients would receive an inactive form of a drug, which is then activated by light in a specific area of the body containing diseased tissue. This localized use of photoactive drugs would minimize the side effects from drugs targeting healthy cells. Axelrod is developing novel computational models that predict properties of photoactive drugs with high speed and accuracy, allowing researchers to focus on only the highest-quality drug candidates. He is advised by Rafael Gomez-Bombarelli, the Jeffrey Cheah Career Development Chair in Engineering in the MIT Department of Materials Science and Engineering. 

    Low-cost 3D perception

    Arjun Balasingam, a PhD student in electrical engineering and computer science and a member of the Computer Science and Artificial Intelligence Laboratory’s (CSAIL) Networks and Mobile Systems group, is developing a technology, called MobiSee, that enables real-time 3D reconstruction in challenging dynamic environments. MobiSee uses self-supervised AI methods along with video and lidar to provide low-cost, state-of-the-art 3D perception on consumer mobile devices like smartphones. This technology could have far-reaching applications across mixed reality, navigation, safety, and sports streaming, in addition to unlocking opportunities for new real-time and immersive experiences. He is advised by Hari Balakrishnan, the Fujitsu Professor of Computer Science and Artificial Intelligence at MIT and member of CSAIL.

    Sleep therapeutics

    Guillermo Bernal SM ’14, PhD ’23, a recent PhD graduate in media arts and sciences, is developing a sleep therapeutic platform that would enable sleep specialists and researchers to conduct robust sleep studies and develop therapy plans remotely, while the patient is comfortable in their home. Called Fascia, the three-part system consists of a polysomnogram with a sleep mask form factor that collects data, a hub that enables researchers to provide stimulation and feedback via olfactory, auditory, and visual stimuli, and a web portal that enables researchers to read a patient’s signals in real time with machine learning analysis. Bernal was advised by Pattie Maes, professor of media arts and sciences at the MIT Media Lab.

    Autonomous manufacturing assembly with human-like tactile perception

    Michael Foshey, a mechanical engineer and project manager with MIT CSAIL’s Computational Design and Fabrication Group, is developing an AI-enabled tactile perception system that can be used to give robots human-like dexterity. With this new technology platform, Foshey and his team hope to enable industry-changing applications in manufacturing. Currently, assembly tasks in manufacturing are largely done by hand and are typically repetitive and tedious. As a result, these jobs are being largely left unfilled. These labor shortages can cause supply chain shortages and increases in the cost of production. Foshey’s new technology platform aims to address this by automating assembly tasks to reduce reliance on manual labor. Foshey is supervised by Wojciech Matusik, MIT professor of electrical engineering and computer science and member of CSAIL.  

    Generative AI for video conferencing

    Vibhaalakshmi Sivaraman SM ’19, a PhD candidate in electrical engineering and computer science who is a member of CSAIL’s Networking and Mobile Systems Group, is developing a generative technology, Gemino, to facilitate video conferencing in high-latency and low-bandwidth network environments. Gemino is a neural compression system for video conferencing that overcomes the robustness concerns and compute complexity challenges that limit current face-image-synthesis models. This technology could enable sustained video conferencing calls in regions and scenarios that cannot reliably support video calls today. Sivaraman is advised by Mohammad Alizadeh, MIT associate professor of electrical engineering and computer science and member of CSAIL.  More

  • in

    Large language models help decipher clinical notes

    Electronic health records (EHRs) need a new public relations manager. Ten years ago, the U.S. government passed a law that required hospitals to digitize their health records with the intent of improving and streamlining care. The enormous amount of information in these now-digital records could be used to answer very specific questions beyond the scope of clinical trials: What’s the right dose of this medication for patients with this height and weight? What about patients with a specific genomic profile?

    Unfortunately, most of the data that could answer these questions is trapped in doctor’s notes, full of jargon and abbreviations. These notes are hard for computers to understand using current techniques — extracting information requires training multiple machine learning models. Models trained for one hospital, also, don’t work well at others, and training each model requires domain experts to label lots of data, a time-consuming and expensive process. 

    An ideal system would use a single model that can extract many types of information, work well at multiple hospitals, and learn from a small amount of labeled data. But how? Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) believed that to disentangle the data, they needed to call on something bigger: large language models. To pull that important medical information, they used a very big, GPT-3 style model to do tasks like expand overloaded jargon and acronyms and extract medication regimens. 

    For example, the system takes an input, which in this case is a clinical note, “prompts” the model with a question about the note, such as “expand this abbreviation, C-T-A.” The system returns an output such as “clear to auscultation,” as opposed to say, a CT angiography. The objective of extracting this clean data, the team says, is to eventually enable more personalized clinical recommendations. 

    Medical data is, understandably, a pretty tricky resource to navigate freely. There’s plenty of red tape around using public resources for testing the performance of large models because of data use restrictions, so the team decided to scrape together their own. Using a set of short, publicly available clinical snippets, they cobbled together a small dataset to enable evaluation of the extraction performance of large language models. 

    “It’s challenging to develop a single general-purpose clinical natural language processing system that will solve everyone’s needs and be robust to the huge variation seen across health datasets. As a result, until today, most clinical notes are not used in downstream analyses or for live decision support in electronic health records. These large language model approaches could potentially transform clinical natural language processing,” says David Sontag, MIT professor of electrical engineering and computer science, principal investigator in CSAIL and the Institute for Medical Engineering and Science, and supervising author on a paper about the work, which will be presented at the Conference on Empirical Methods in Natural Language Processing. “The research team’s advances in zero-shot clinical information extraction makes scaling possible. Even if you have hundreds of different use cases, no problem — you can build each model with a few minutes of work, versus having to label a ton of data for that particular task.”

    For example, without any labels at all, the researchers found these models could achieve 86 percent accuracy at expanding overloaded acronyms, and the team developed additional methods to boost this further to 90 percent accuracy, with still no labels required.

    Imprisoned in an EHR 

    Experts have been steadily building up large language models (LLMs) for quite some time, but they burst onto the mainstream with GPT-3’s widely covered ability to complete sentences. These LLMs are trained on a huge amount of text from the internet to finish sentences and predict the next most likely word. 

    While previous, smaller models like earlier GPT iterations or BERT have pulled off a good performance for extracting medical data, they still require substantial manual data-labeling effort. 

    For example, a note, “pt will dc vanco due to n/v” means that this patient (pt) was taking the antibiotic vancomycin (vanco) but experienced nausea and vomiting (n/v) severe enough for the care team to discontinue (dc) the medication. The team’s research avoids the status quo of training separate machine learning models for each task (extracting medication, side effects from the record, disambiguating common abbreviations, etc). In addition to expanding abbreviations, they investigated four other tasks, including if the models could parse clinical trials and extract detail-rich medication regimens.  

    “Prior work has shown that these models are sensitive to the prompt’s precise phrasing. Part of our technical contribution is a way to format the prompt so that the model gives you outputs in the correct format,” says Hunter Lang, CSAIL PhD student and author on the paper. “For these extraction problems, there are structured output spaces. The output space is not just a string. It can be a list. It can be a quote from the original input. So there’s more structure than just free text. Part of our research contribution is encouraging the model to give you an output with the correct structure. That significantly cuts down on post-processing time.”

    The approach can’t be applied to out-of-the-box health data at a hospital: that requires sending private patient information across the open internet to an LLM provider like OpenAI. The authors showed that it’s possible to work around this by distilling the model into a smaller one that could be used on-site.

    The model — sometimes just like humans — is not always beholden to the truth. Here’s what a potential problem might look like: Let’s say you’re asking the reason why someone took medication. Without proper guardrails and checks, the model might just output the most common reason for that medication, if nothing is explicitly mentioned in the note. This led to the team’s efforts to force the model to extract more quotes from data and less free text.

    Future work for the team includes extending to languages other than English, creating additional methods for quantifying uncertainty in the model, and pulling off similar results with open-sourced models. 

    “Clinical information buried in unstructured clinical notes has unique challenges compared to general domain text mostly due to large use of acronyms, and inconsistent textual patterns used across different health care facilities,” says Sadid Hasan, AI lead at Microsoft and former executive director of AI at CVS Health, who was not involved in the research. “To this end, this work sets forth an interesting paradigm of leveraging the power of general domain large language models for several important zero-/few-shot clinical NLP tasks. Specifically, the proposed guided prompt design of LLMs to generate more structured outputs could lead to further developing smaller deployable models by iteratively utilizing the model generated pseudo-labels.”

    “AI has accelerated in the last five years to the point at which these large models can predict contextualized recommendations with benefits rippling out across a variety of domains such as suggesting novel drug formulations, understanding unstructured text, code recommendations or create works of art inspired by any number of human artists or styles,” says Parminder Bhatia, who was formerly Head of Machine Learning at AWS Health AI and is currently Head of ML for low-code applications leveraging large language models at AWS AI Labs. “One of the applications of these large models [the team has] recently launched is Amazon CodeWhisperer, which is [an] ML-powered coding companion that helps developers in building applications.”

    As part of the MIT Abdul Latif Jameel Clinic for Machine Learning in Health, Agrawal, Sontag, and Lang wrote the paper alongside Yoon Kim, MIT assistant professor and CSAIL principal investigator, and Stefan Hegselmann, a visiting PhD student from the University of Muenster. First-author Agrawal’s research was supported by a Takeda Fellowship, the MIT Deshpande Center for Technological Innovation, and the MLA@CSAIL Initiatives. More

  • in

    New program to support translational research in AI, data science, and machine learning

    The MIT School of Engineering and Pillar VC today announced the MIT-Pillar AI Collective, a one-year pilot program funded by a gift from Pillar VC that will provide seed grants for projects in artificial intelligence, machine learning, and data science with the goal of supporting translational research. The program will support graduate students and postdocs through access to funding, mentorship, and customer discovery.

    Administered by the MIT Deshpande Center for Technological Innovation, the MIT-Pillar AI Collective will center on the market discovery process, advancing projects through market research, customer discovery, and prototyping. Graduate students and postdocs will aim to emerge from the program having built minimum viable products, with support from Pillar VC and experienced industry leaders.

    “We are grateful for this support from Pillar VC and to join forces to converge the commercialization of translational research in AI, data science, and machine learning, with an emphasis on identifying and cultivating prospective entrepreneurs,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “Pillar’s focus on mentorship for our graduate students and postdoctoral researchers, and centering the program within the Deshpande Center, will undoubtedly foster big ideas in AI and create an environment for prospective companies to launch and thrive.” 

    Founded by Jamie Goldstein ’89, Pillar VC is committed to growing companies and investing in personal and professional development, coaching, and community.

    “Many of the most promising companies of the future are living at MIT in the form of transformational research in the fields of data science, AI, and machine learning,” says Goldstein. “We’re honored by the chance to help unlock this potential and catalyze a new generation of founders by surrounding students and postdoctoral researchers with the resources and mentorship they need to move from the lab to industry.”

    The program will launch with the 2022-23 academic year. Grants will be open only to MIT faculty and students, with an emphasis on funding for graduate students in their final year, as well as postdocs. Applications must be submitted by MIT employees with principal investigator status. A selection committee composed of three MIT representatives will include Devavrat Shah, faculty director of the Deshpande Center, the Andrew (1956) and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society; the chair of the selection committee; and a representative from the MIT Schwarzman College of Computing. The committee will also include representation from Pillar VC. Funding will be provided for up to nine research teams.

    “The Deshpande Center will serve as the perfect home for the new collective, given its focus on moving innovative technologies from the lab to the marketplace in the form of breakthrough products and new companies,” adds Chandrakasan. 

    “The Deshpande Center has a 20-year history of guiding new technologies toward commercialization, where they can have a greater impact,” says Shah. “This new collective will help the center expand its own impact by helping more projects realize their market potential and providing more support to researchers in the fast-growing fields of AI, machine learning, and data science.” More

  • in

    Devavrat Shah appointed faculty director of the Deshpande Center

    Devavrat Shah, the Andrew (1956) and Erna Viterbi Professor in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society, has been named faculty director of the MIT Deshpande Center for Technological Innovations. The new role took effect on Feb. 1.

    Shah replaces Tim Swager, the John D. MacArthur Professor of Chemistry, who has held the position of faculty director since 2014. Working alongside Executive Director to the Deshpande Center Leon Sandler, Swager helped the Deshpande Center build an inclusive environment where innovation and entrepreneurship could thrive. By examining new models for directing, seeding, and fostering the commercialization of inventions and technology, Swager helped students and faculty breathe life into research, propelling it out of the lab and into the world as successful ventures.

    The MIT Deshpande Center for Technological Innovations is an interdepartmental center working to empower MIT’s most talented students and faculty by helping them bring new innovative technologies from the lab to the marketplace in the form of breakthrough products and new companies. Desh Deshpande founded the center with his wife, in 2002.

    “Professor Shah’s deep entrepreneurial experience coupled with his research on large complex networks will be tremendous assets to the center,” says Deshpande. “Devavrat is an impactful educator and inspiring mentor who will play a key role in the center’s mission to foster innovation and accelerate the impact of new discoveries.”

    Shah joined the Department of Electrical Engineering and Computer Science in 2005. With research focusing on statistical inference and stochastic networks, his research contributions span a variety of areas including resource allocation in communications networks, inference and learning on graphical models, algorithms for social data processing including ranking, recommendations and crowdsourcing, and more recently, causal inference using observational and experimental data.  

    While Shah’s work spans a range of areas across electrical engineering, computer science, and operations research, they are all tied together with the singular focus on developing algorithmic solutions for practical, challenging problems. He’s also authored two books, one on gossip algorithms in 2006 and the other on prediction methods of nearest neighbors in 2018. 

    A highly regarded teacher, Shah has been very active in curriculum development — most notably class 6.438 (Algorithms for Inference) and class 6.401 (Introduction to Statistical Data Analysis) — and has taken a leading role in developing educational programs in the statistics and data science at MIT as part of the Statistics and Data Science Center within the Institute for Data, Systems, and Society.

    “With his experience and contributions as a researcher, educator, and innovator, I have no doubt that Devavrat will excel as the next faculty director of the Deshpande Center and help usher in the next era of innovation for MIT,” says Anantha P. Chandrakasan, dean of the School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am grateful to Tim for the tremendous work he has done during his eight years as faculty director of the Deshpande Center. His commitment to building an inclusive environment for innovation and entrepreneurship to thrive was particularly impressive.” 

    A practiced entrepreneur, Shah co-founded Celect, Inc. — now part of Nike — in 2013, to help retailers accurately predict demand using omnichannel data. In 2019, he helped start IkigaiLabs, where he serves as CTO, with the mission to build self-driving organizations by enabling data-driven operations with human-in-the-loop with the ease of spreadsheet.

    Among his many achievements and accolades, Shah was named a Kavli Fellow of the National Academy of Science in 2014 and was just recently announced as an Institute of Electrical and Electronics Engineers (IEEE) Fellow for 2022. He’s also received a number of awards for his papers from INFORMS Applied Probability Society, INFORMS Management Science and Operations Management, NeurIPS, ACM Sigmetrics, and IEEE Infocom. His career prizes include the Erlang Prize from INFORMS Applied Probability Society and the Rising Star Award from ACM Sigmetrics. Shah has also received multiple Test of Time paper awards from ACM Sigmetrics and is recognized as a distinguished alumnus of his alma mater, the Indian Institute of Technology Bombay.

    “The Deshpande Center thanks Tim for his years of service as faculty director,” says the center’s executive director, Leon Sandler. “Tim’s commitment to innovation played an integral role in our success, and the center’s programs have thrived under his leadership. I look forward to working with Devavrat in the continuing effort to fulfill the mission of our center.”

    As part of his new post, Shah will work closely with Sandler, who has held the executive director position at the Deshpande Center since 2006. More