More stories

  • in

    To improve solar and other clean energy tech, look beyond hardware

    To continue reducing the costs of solar energy and other clean energy technologies, scientists and engineers will likely need to focus, at least in part, on improving technology features that are not based on hardware, according to MIT researchers. They describe this finding and the mechanisms behind it today in Nature Energy.

    While the cost of installing a solar energy system has dropped by more than 99 percent since 1980, this new analysis shows that “soft technology” features, such as the codified permitting practices, supply chain management techniques, and system design processes that go into deploying a solar energy plant, contributed only 10 to 15 percent of total cost declines. Improvements to hardware features were responsible for the lion’s share.

    But because soft technology is increasingly dominating the total costs of installing solar energy systems, this trend threatens to slow future cost savings and hamper the global transition to clean energy, says the study’s senior author, Jessika Trancik, a professor in MIT’s Institute for Data, Systems, and Society (IDSS).

    Trancik’s co-authors include lead author Magdalena M. Klemun, a former IDSS graduate student and postdoc who is now an assistant professor at the Hong Kong University of Science and Technology; Goksin Kavlak, a former IDSS graduate student and postdoc who is now an associate at the Brattle Group; and James McNerney, a former IDSS postdoc and now senior research fellow at the Harvard Kennedy School.

    The team created a quantitative model to analyze the cost evolution of solar energy systems, which captures the contributions of both hardware technology features and soft technology features.

    The framework shows that soft technology hasn’t improved much over time — and that soft technology features contributed even less to overall cost declines than previously estimated.

    Their findings indicate that to reverse this trend and accelerate cost declines, engineers could look at making solar energy systems less reliant on soft technology to begin with, or they could tackle the problem directly by improving inefficient deployment processes.  

    “Really understanding where the efficiencies and inefficiencies are, and how to address those inefficiencies, is critical in supporting the clean energy transition. We are making huge investments of public dollars into this, and soft technology is going to be absolutely essential to making those funds count,” says Trancik.

    “However,” Klemun adds, “we haven’t been thinking about soft technology design as systematically as we have for hardware. That needs to change.”

    The hard truth about soft costs

    Researchers have observed that the so-called “soft costs” of building a solar power plant — the costs of designing and installing the plant — are becoming a much larger share of total costs. In fact, the share of soft costs now typically ranges from 35 to 64 percent.

    “We wanted to take a closer look at where these soft costs were coming from and why they weren’t coming down over time as quickly as the hardware costs,” Trancik says.

    In the past, scientists have modeled the change in solar energy costs by dividing total costs into additive components — hardware components and nonhardware components — and then tracking how these components changed over time.

    “But if you really want to understand where those rates of change are coming from, you need to go one level deeper to look at the technology features. Then things split out differently,” Trancik says.

    The researchers developed a quantitative approach that models the change in solar energy costs over time by assigning contributions to the individual technology features, including both hardware features and soft technology features.

    For instance, their framework would capture how much of the decline in system installation costs — a soft cost — is due to standardized practices of certified installers — a soft technology feature. It would also capture how that same soft cost is affected by increased photovoltaic module efficiency — a hardware technology feature.

    With this approach, the researchers saw that improvements in hardware had the greatest impacts on driving down soft costs in solar energy systems. For example, the efficiency of photovoltaic modules doubled between 1980 and 2017, reducing overall system costs by 17 percent. But about 40 percent of that overall decline could be attributed to reductions in soft costs tied to improved module efficiency.

    The framework shows that, while hardware technology features tend to improve many cost components, soft technology features affect only a few.

    “You can see this structural difference even before you collect data on how the technologies have changed over time. That’s why mapping out a technology’s network of cost dependencies is a useful first step to identify levers of change, for solar PV and for other technologies as well,” Klemun notes.  

    Static soft technology

    The researchers used their model to study several countries, since soft costs can vary widely around the world. For instance, solar energy soft costs in Germany are about 50 percent less than those in the U.S.

    The fact that hardware technology improvements are often shared globally led to dramatic declines in costs over the past few decades across locations, the analysis showed. Soft technology innovations typically aren’t shared across borders. Moreover, the team found that countries with better soft technology performance 20 years ago still have better performance today, while those with worse performance didn’t see much improvement.

    This country-by-country difference could be driven by regulation and permitting processes, cultural factors, or by market dynamics such as how firms interact with each other, Trancik says.

    “But not all soft technology variables are ones that you would want to change in a cost-reducing direction, like lower wages. So, there are other considerations, beyond just bringing the cost of the technology down, that we need to think about when interpreting these results,” she says.

    Their analysis points to two strategies for reducing soft costs. For one, scientists could focus on developing hardware improvements that make soft costs more dependent on hardware technology variables and less on soft technology variables, such as by creating simpler, more standardized equipment that could reduce on-site installation time.

    Or researchers could directly target soft technology features without changing hardware, perhaps by creating more efficient workflows for system installation or automated permitting platforms.

    “In practice, engineers will often pursue both approaches, but separating the two in a formal model makes it easier to target innovation efforts by leveraging specific relationships between technology characteristics and costs,” Klemun says.

    “Often, when we think about information processing, we are leaving out processes that still happen in a very low-tech way through people communicating with one another. But it is just as important to think about that as a technology as it is to design fancy software,” Trancik notes.

    In the future, she and her collaborators want to apply their quantitative model to study the soft costs related to other technologies, such as electrical vehicle charging and nuclear fission. They are also interested in better understanding the limits of soft technology improvement, and how one could design better soft technology from the outset.

    This research is funded by the U.S. Department of Energy Solar Energy Technologies Office. More

  • in

    Methane research takes on new urgency at MIT

    One of the most notable climate change provisions in the 2022 Inflation Reduction Act is the first U.S. federal tax on a greenhouse gas (GHG). That the fee targets methane (CH4), rather than carbon dioxide (CO2), emissions is indicative of the urgency the scientific community has placed on reducing this short-lived but powerful gas. Methane persists in the air about 12 years — compared to more than 1,000 years for CO2 — yet it immediately causes about 120 times more warming upon release. The gas is responsible for at least a quarter of today’s gross warming. 

    “Methane has a disproportionate effect on near-term warming,” says Desiree Plata, the director of MIT Methane Network. “CH4 does more damage than CO2 no matter how long you run the clock. By removing methane, we could potentially avoid critical climate tipping points.” 

    Because GHGs have a runaway effect on climate, reductions made now will have a far greater impact than the same reductions made in the future. Cutting methane emissions will slow the thawing of permafrost, which could otherwise lead to massive methane releases, as well as reduce increasing emissions from wetlands.  

    “The goal of MIT Methane Network is to reduce methane emissions by 45 percent by 2030, which would save up to 0.5 degree C of warming by 2100,” says Plata, an associate professor of civil and environmental engineering at MIT and director of the Plata Lab. “When you consider that governments are trying for a 1.5-degree reduction of all GHGs by 2100, this is a big deal.” 

    Under normal concentrations, methane, like CO2, poses no health risks. Yet methane assists in the creation of high levels of ozone. In the lower atmosphere, ozone is a key component of air pollution, which leads to “higher rates of asthma and increased emergency room visits,” says Plata. 

    Methane-related projects at the Plata Lab include a filter made of zeolite — the same clay-like material used in cat litter — designed to convert methane into CO2 at dairy farms and coal mines. At first glance, the technology would appear to be a bit of a hard sell, since it converts one GHG into another. Yet the zeolite filter’s low carbon and dollar costs, combined with the disproportionate warming impact of methane, make it a potential game-changer.

    The sense of urgency about methane has been amplified by recent studies that show humans are generating far more methane emissions than previously estimated, and that the rates are rising rapidly. Exactly how much methane is in the air is uncertain. Current methods for measuring atmospheric methane, such as ground, drone, and satellite sensors, “are not readily abundant and do not always agree with each other,” says Plata.  

    The Plata Lab is collaborating with Tim Swager in the MIT Department of Chemistry to develop low-cost methane sensors. “We are developing chemiresisitive sensors that cost about a dollar that you could place near energy infrastructure to back-calculate where leaks are coming from,” says Plata.  

    The researchers are working on improving the accuracy of the sensors using machine learning techniques and are planning to integrate internet-of-things technology to transmit alerts. Plata and Swager are not alone in focusing on data collection: the Inflation Reduction Act adds significant funding for methane sensor research. 

    Other research at the Plata Lab includes the development of nanomaterials and heterogeneous catalysis techniques for environmental applications. The lab also explores mitigation solutions for industrial waste, particularly those related to the energy transition. Plata is the co-founder of an lithium-ion battery recycling startup called Nth Cycle. 

    On a more fundamental level, the Plata Lab is exploring how to develop products with environmental and social sustainability in mind. “Our overarching mission is to change the way that we invent materials and processes so that environmental objectives are incorporated along with traditional performance and cost metrics,” says Plata. “It is important to do that rigorous assessment early in the design process.”

    Play video

    MIT amps up methane research 

    The MIT Methane Network brings together 26 researchers from MIT along with representatives of other institutions “that are dedicated to the idea that we can reduce methane levels in our lifetime,” says Plata. The organization supports research such as Plata’s zeolite and sensor projects, as well as designing pipeline-fixing robots, developing methane-based fuels for clean hydrogen, and researching the capture and conversion of methane into liquid chemical precursors for pharmaceuticals and plastics. Other members are researching policies to encourage more sustainable agriculture and land use, as well as methane-related social justice initiatives. 

    “Methane is an especially difficult problem because it comes from all over the place,” says Plata. A recent Global Carbon Project study estimated that half of methane emissions are caused by humans. This is led by waste and agriculture (28 percent), including cow and sheep belching, rice paddies, and landfills.  

    Fossil fuels represent 18 percent of the total budget. Of this, about 63 percent is derived from oil and gas production and pipelines, 33 percent from coal mining activities, and 5 percent from industry and transportation. Human-caused biomass burning, primarily from slash-and-burn agriculture, emits about 4 percent of the global total.  

    The other half of the methane budget includes natural methane emissions from wetlands (20 percent) and other natural sources (30 percent). The latter includes permafrost melting and natural biomass burning, such as forest fires started by lightning.  

    With increases in global warming and population, the line between anthropogenic and natural causes is getting fuzzier. “Human activities are accelerating natural emissions,” says Plata. “Climate change increases the release of methane from wetlands and permafrost and leads to larger forest and peat fires.”  

    The calculations can get complicated. For example, wetlands provide benefits from CO2 capture, biological diversity, and sea level rise resiliency that more than compensate for methane releases. Meanwhile, draining swamps for development increases emissions. 

    Over 100 nations have signed onto the U.N.’s Global Methane Pledge to reduce at least 30 percent of anthropogenic emissions within the next 10 years. The U.N. report estimates that this goal can be achieved using proven technologies and that about 60 percent of these reductions can be accomplished at low cost. 

    Much of the savings would come from greater efficiencies in fossil fuel extraction, processing, and delivery. The methane fees in the Inflation Reduction Act are primarily focused on encouraging fossil fuel companies to accelerate ongoing efforts to cap old wells, flare off excess emissions, and tighten pipeline connections.  

    Fossil fuel companies have already made far greater pledges to reduce methane than they have with CO2, which is central to their business. This is due, in part, to the potential savings, as well as in preparation for methane regulations expected from the Environmental Protection Agency in late 2022. The regulations build upon existing EPA oversight of drilling operations, and will likely be exempt from the U.S. Supreme Court’s ruling that limits the federal government’s ability to regulate GHGs. 

    Zeolite filter targets methane in dairy and coal 

    The “low-hanging fruit” of gas stream mitigation addresses most of the 20 percent of total methane emissions in which the gas is released in sufficiently high concentrations for flaring. Plata’s zeolite filter aims to address the thornier challenge of reducing the 80 percent of non-flammable dilute emissions. 

    Plata found inspiration in decades-old catalysis research for turning methane into methanol. One strategy has been to use an abundant, low-cost aluminosilicate clay called zeolite.  

    “The methanol creation process is challenging because you need to separate a liquid, and it has very low efficiency,” says Plata. “Yet zeolite can be very efficient at converting methane into CO2, and it is much easier because it does not require liquid separation. Converting methane to CO2 sounds like a bad thing, but there is a major anti-warming benefit. And because methane is much more dilute than CO2, the relative CO2 contribution is minuscule.”  

    Using zeolite to create methanol requires highly concentrated methane, high temperatures and pressures, and industrial processing conditions. Yet Plata’s process, which dopes the zeolite with copper, operates in the presence of oxygen at much lower temperatures under typical pressures. “We let the methane proceed the way it wants from a thermodynamic perspective from methane to methanol down to CO2,” says Plata. 

    Researchers around the world are working on other dilute methane removal technologies. Projects include spraying iron salt aerosols into sea air where they react with natural chlorine or bromine radicals, thereby capturing methane. Most of these geoengineering solutions, however, are difficult to measure and would require massive scale to make a difference.  

    Plata is focusing her zeolite filters on environments where concentrations are high, but not so high as to be flammable. “We are trying to scale zeolite into filters that you could snap onto the side of a cross-ventilation fan in a dairy barn or in a ventilation air shaft in a coal mine,” says Plata. “For every packet of air we bring in, we take a lot of methane out, so we get more bang for our buck.”  

    The major challenge is creating a filter that can handle high flow rates without getting clogged or falling apart. Dairy barn air handlers can push air at up to 5,000 cubic feet per minute and coal mine handlers can approach 500,000 CFM. 

    Plata is exploring engineering options including fluidized bed reactors with floating catalyst particles. Another filter solution, based in part on catalytic converters, features “higher-order geometric structures where you have a porous material with a long path length where the gas can interact with the catalyst,” says Plata. “This avoids the challenge with fluidized beds of containing catalyst particles in the reactor. Instead, they are fixed within a structured material.”  

    Competing technologies for removing methane from mine shafts “operate at temperatures of 1,000 to 1,200 degrees C, requiring a lot of energy and risking explosion,” says Plata. “Our technology avoids safety concerns by operating at 300 to 400 degrees C. It reduces energy use and provides more tractable deployment costs.” 

    Potentially, energy and dollar costs could be further reduced in coal mines by capturing the heat generated by the conversion process. “In coal mines, you have enrichments above a half-percent methane, but below the 4 percent flammability threshold,” says Plata. “The excess heat from the process could be used to generate electricity using off-the-shelf converters.” 

    Plata’s dairy barn research is funded by the Gerstner Family Foundation and the coal mining project by the U.S. Department of Energy. “The DOE would like us to spin out the technology for scale-up within three years,” says Plata. “We cannot guarantee we will hit that goal, but we are trying to develop this as quickly as possible. Our society needs to start reducing methane emissions now.”  More

  • in

    Is it topological? A new materials database has the answer

    What will it take to make our electronics smarter, faster, and more resilient? One idea is to build them from materials that are topological.

    Topology stems from a branch of mathematics that studies shapes that can be manipulated or deformed without losing certain core properties. A donut is a common example: If it were made of rubber, a donut could be twisted and squeezed into a completely new shape, such as a coffee mug, while retaining a key trait — namely, its center hole, which takes the form of the cup’s handle. The hole, in this case, is a topological trait, robust against certain deformations.

    In recent years, scientists have applied concepts of topology to the discovery of materials with similarly robust electronic properties. In 2007, researchers predicted the first electronic topological insulators — materials in which electrons that behave in ways that are “topologically protected,” or persistent in the face of certain disruptions.

    Since then, scientists have searched for more topological materials with the aim of building better, more robust electronic devices. Until recently, only a handful of such materials were identified, and were therefore assumed to be a rarity.

    Now researchers at MIT and elsewhere have discovered that, in fact, topological materials are everywhere, if you know how to look for them.

    In a paper published today in Science, the team, led by Nicolas Regnault of Princeton University and the École Normale Supérieure Paris, reports harnessing the power of multiple supercomputers to map the electronic structure of more than 96,000 natural and synthetic crystalline materials. They applied sophisticated filters to determine whether and what kind of topological traits exist in each structure.

    Overall, they found that 90 percent of all known crystalline structures contain at least one topological property, and more than 50 percent of all naturally occurring materials exhibit some sort of topological behavior.

    “We found there’s a ubiquity — topology is everywhere,” says Benjamin Wieder, the study’s co-lead, and a postdoc in MIT’s Department of Physics.

    The team has compiled the newly identified materials into a new, freely accessible Topological Materials Database resembling a periodic table of topology. With this new library, scientists can quickly search materials of interest for any topological properties they might hold, and harness them to build ultra-low-power transistors, new magnetic memory storage, and other devices with robust electronic properties.

    The paper includes co-lead author Maia Vergniory of the Donostia International Physics Center, Luis Elcoro of the University of Basque Country, Stuart Parkin and Claudia Felser of the Max Planck Institute, and Andrei Bernevig of Princeton University.

    Beyond intuition

    The new study was motivated by a desire to speed up the traditional search for topological materials.

    “The way the original materials were found was through chemical intuition,” Wieder says. “That approach had a lot of early successes. But as we theoretically predicted more kinds of topological phases, it seemed intuition wasn’t getting us very far.”

    Wieder and his colleagues instead utilized an efficient and systematic method to root out signs of topology, or robust electronic behavior, in all known crystalline structures, also known as inorganic solid-state materials.

    For their study, the researchers looked to the Inorganic Crystal Structure Database, or ICSD, a repository into which researchers enter the atomic and chemical structures of crystalline materials that they have studied. The database includes materials found in nature, as well as those that have been synthesized and manipulated in the lab. The ICSD is currently the largest materials database in the world, containing over 193,000 crystals whose structures have been mapped and characterized.

    The team downloaded the entire ICSD, and after performing some data cleaning to weed out structures with corrupted files or incomplete data, the researchers were left with just over 96,000 processable structures. For each of these structures, they performed a set of calculations based on fundamental knowledge of the relation between chemical constituents, to produce a map of the material’s electronic structure, also known as the electron band structure.

    The team was able to efficiently carry out the complicated calculations for each structure using multiple supercomputers, which they then employed to perform a second set of operations, this time to screen for various known topological phases, or persistent electrical behavior in each crystal material.

    “We’re looking for signatures in the electronic structure in which certain robust phenomena should occur in this material,” explains Wieder, whose previous work involved refining and expanding the screening technique, known as topological quantum chemistry.

    From their high-throughput analysis, the team quickly discovered a surprisingly large number of materials that are naturally topological, without any experimental manipulation, as well as materials that can be manipulated, for instance with light or chemical doping, to exhibit some sort of robust electronic behavior. They also discovered a handful of materials that contained more than one topological state when exposed to certain conditions.

    “Topological phases of matter in 3D solid-state materials have been proposed as venues for observing and manipulating exotic effects, including the interconversion of electrical current and electron spin, the tabletop simulation of exotic theories from high-energy physics, and even, under the right conditions, the storage and manipulation of quantum information,” Wieder notes. 

    For experimentalists who are studying such effects, Wieder says the team’s new database now reveals a menagerie of new materials to explore.

    This research was funded, in part, by the U.S. Department of Energy, the National Science Foundation, and the Office of Naval Research. More

  • in

    Computational modeling guides development of new materials

    Metal-organic frameworks, a class of materials with porous molecular structures, have a variety of possible applications, such as capturing harmful gases and catalyzing chemical reactions. Made of metal atoms linked by organic molecules, they can be configured in hundreds of thousands of different ways.

    To help researchers sift through all of the possible metal-organic framework (MOF) structures and help identify the ones that would be most practical for a particular application, a team of MIT computational chemists has developed a model that can analyze the features of a MOF structure and predict if it will be stable enough to be useful.

    The researchers hope that these computational predictions will help cut the development time of new MOFs.

    “This will allow researchers to test the promise of specific materials before they go through the trouble of synthesizing them,” says Heather Kulik, an associate professor of chemical engineering at MIT.

    The MIT team is now working to develop MOFs that could be used to capture methane gas and convert it to useful compounds such as fuels.

    The researchers described their new model in two papers, one in the Journal of the American Chemical Society and one in Scientific Data. Graduate students Aditya Nandy and Gianmarco Terrones are the lead authors of the Scientific Data paper, and Nandy is also the lead author of the JACS paper. Kulik is the senior author of both papers.

    Modeling structure

    MOFs consist of metal atoms joined by organic molecules called linkers to create a rigid, cage-like structure. The materials also have many pores, which makes them useful for catalyzing reactions involving gases but can also make them less structurally stable.

    “The limitation in seeing MOFs realized at industrial scale is that although we can control their properties by controlling where each atom is in the structure, they’re not necessarily that stable, as far as materials go,” Kulik says. “They’re very porous and they can degrade under realistic conditions that we need for catalysis.”

    Scientists have been working on designing MOFs for more than 20 years, and thousands of possible structures have been published. A centralized repository contains about 10,000 of these structures but is not linked to any of the published findings on the properties of those structures.

    Kulik, who specializes in using computational modeling to discover structure-property relationships of materials, wanted to take a more systematic approach to analyzing and classifying the properties of MOFs.

    “When people make these now, it’s mostly trial and error. The MOF dataset is really promising because there are so many people excited about MOFs, so there’s so much to learn from what everyone’s been working on, but at the same time, it’s very noisy and it’s not systematic the way it’s reported,” she says.

    Kulik and her colleagues set out to analyze published reports of MOF structures and properties using a natural-language-processing algorithm. Using this algorithm, they scoured nearly 4,000 published papers, extracting information on the temperature at which a given MOF would break down. They also pulled out data on whether particular MOFs can withstand the conditions needed to remove solvents used to synthesize them and make sure they become porous.

    Once the researchers had this information, they used it to train two neural networks to predict MOFs’ thermal stability and stability during solvent removal, based on the molecules’ structure.

    “Before you start working with a material and thinking about scaling it up for different applications, you want to know will it hold up, or is it going to degrade in the conditions I would want to use it in?” Kulik says. “Our goal was to get better at predicting what makes a stable MOF.”

    Better stability

    Using the model, the researchers were able to identify certain features that influence stability. In general, simpler linkers with fewer chemical groups attached to them are more stable. Pore size is also important: Before the researchers did their analysis, it had been thought that MOFs with larger pores might be too unstable. However, the MIT team found that large-pore MOFs can be stable if other aspects of their structure counteract the large pore size.

    “Since MOFs have so many things that can vary at the same time, such as the metal, the linkers, the connectivity, and the pore size, it is difficult to nail down what governs stability across different families of MOFs,” Nandy says. “Our models enable researchers to make predictions on existing or new materials, many of which have yet to be made.”

    The researchers have made their data and models available online. Scientists interested in using the models can get recommendations for strategies to make an existing MOF more stable, and they can also add their own data and feedback on the predictions of the models.

    The MIT team is now using the model to try to identify MOFs that could be used to catalyze the conversion of methane gas to methanol, which could be used as fuel. Kulik also plans to use the model to create a new dataset of hypothetical MOFs that haven’t been built before but are predicted to have high stability. Researchers could then screen this dataset for a variety of properties.

    “People are interested in MOFs for things like quantum sensing and quantum computing, all sorts of different applications where you need metals distributed in this atomically precise way,” Kulik says.

    The research was funded by DARPA, the U.S. Office of Naval Research, the U.S. Department of Energy, a National Science Foundation Graduate Research Fellowship, a Career Award at the Scientific Interface from the Burroughs Wellcome Fund, and an AAAS Marion Milligan Mason Award. More

  • in

    Using artificial intelligence to find anomalies hiding in massive datasets

    Identifying a malfunction in the nation’s power grid can be like trying to find a needle in an enormous haystack. Hundreds of thousands of interrelated sensors spread across the U.S. capture data on electric current, voltage, and other critical information in real time, often taking multiple recordings per second.

    Researchers at the MIT-IBM Watson AI Lab have devised a computationally efficient method that can automatically pinpoint anomalies in those data streams in real time. They demonstrated that their artificial intelligence method, which learns to model the interconnectedness of the power grid, is much better at detecting these glitches than some other popular techniques.

    Because the machine-learning model they developed does not require annotated data on power grid anomalies for training, it would be easier to apply in real-world situations where high-quality, labeled datasets are often hard to come by. The model is also flexible and can be applied to other situations where a vast number of interconnected sensors collect and report data, like traffic monitoring systems. It could, for example, identify traffic bottlenecks or reveal how traffic jams cascade.

    “In the case of a power grid, people have tried to capture the data using statistics and then define detection rules with domain knowledge to say that, for example, if the voltage surges by a certain percentage, then the grid operator should be alerted. Such rule-based systems, even empowered by statistical data analysis, require a lot of labor and expertise. We show that we can automate this process and also learn patterns from the data using advanced machine-learning techniques,” says senior author Jie Chen, a research staff member and manager of the MIT-IBM Watson AI Lab.

    The co-author is Enyan Dai, an MIT-IBM Watson AI Lab intern and graduate student at the Pennsylvania State University. This research will be presented at the International Conference on Learning Representations.

    Probing probabilities

    The researchers began by defining an anomaly as an event that has a low probability of occurring, like a sudden spike in voltage. They treat the power grid data as a probability distribution, so if they can estimate the probability densities, they can identify the low-density values in the dataset. Those data points which are least likely to occur correspond to anomalies.

    Estimating those probabilities is no easy task, especially since each sample captures multiple time series, and each time series is a set of multidimensional data points recorded over time. Plus, the sensors that capture all that data are conditional on one another, meaning they are connected in a certain configuration and one sensor can sometimes impact others.

    To learn the complex conditional probability distribution of the data, the researchers used a special type of deep-learning model called a normalizing flow, which is particularly effective at estimating the probability density of a sample.

    They augmented that normalizing flow model using a type of graph, known as a Bayesian network, which can learn the complex, causal relationship structure between different sensors. This graph structure enables the researchers to see patterns in the data and estimate anomalies more accurately, Chen explains.

    “The sensors are interacting with each other, and they have causal relationships and depend on each other. So, we have to be able to inject this dependency information into the way that we compute the probabilities,” he says.

    This Bayesian network factorizes, or breaks down, the joint probability of the multiple time series data into less complex, conditional probabilities that are much easier to parameterize, learn, and evaluate. This allows the researchers to estimate the likelihood of observing certain sensor readings, and to identify those readings that have a low probability of occurring, meaning they are anomalies.

    Their method is especially powerful because this complex graph structure does not need to be defined in advance — the model can learn the graph on its own, in an unsupervised manner.

    A powerful technique

    They tested this framework by seeing how well it could identify anomalies in power grid data, traffic data, and water system data. The datasets they used for testing contained anomalies that had been identified by humans, so the researchers were able to compare the anomalies their model identified with real glitches in each system.

    Their model outperformed all the baselines by detecting a higher percentage of true anomalies in each dataset.

    “For the baselines, a lot of them don’t incorporate graph structure. That perfectly corroborates our hypothesis. Figuring out the dependency relationships between the different nodes in the graph is definitely helping us,” Chen says.

    Their methodology is also flexible. Armed with a large, unlabeled dataset, they can tune the model to make effective anomaly predictions in other situations, like traffic patterns.

    Once the model is deployed, it would continue to learn from a steady stream of new sensor data, adapting to possible drift of the data distribution and maintaining accuracy over time, says Chen.

    Though this particular project is close to its end, he looks forward to applying the lessons he learned to other areas of deep-learning research, particularly on graphs.

    Chen and his colleagues could use this approach to develop models that map other complex, conditional relationships. They also want to explore how they can efficiently learn these models when the graphs become enormous, perhaps with millions or billions of interconnected nodes. And rather than finding anomalies, they could also use this approach to improve the accuracy of forecasts based on datasets or streamline other classification techniques.

    This work was funded by the MIT-IBM Watson AI Lab and the U.S. Department of Energy. More