More stories

  • in

    A universal system for decoding any type of data sent across a network

    Every piece of data that travels over the internet — from paragraphs in an email to 3D graphics in a virtual reality environment — can be altered by the noise it encounters along the way, such as electromagnetic interference from a microwave or Bluetooth device. The data are coded so that when they arrive at their destination, a decoding algorithm can undo the negative effects of that noise and retrieve the original data.

    Since the 1950s, most error-correcting codes and decoding algorithms have been designed together. Each code had a structure that corresponded with a particular, highly complex decoding algorithm, which often required the use of dedicated hardware.

    Researchers at MIT, Boston University, and Maynooth University in Ireland have now created the first silicon chip that is able to decode any code, regardless of its structure, with maximum accuracy, using a universal decoding algorithm called Guessing Random Additive Noise Decoding (GRAND). By eliminating the need for multiple, computationally complex decoders, GRAND enables increased efficiency that could have applications in augmented and virtual reality, gaming, 5G networks, and connected devices that rely on processing a high volume of data with minimal delay.

    The research at MIT is led by Muriel Médard, the Cecil H. and Ida Green Professor in the Department of Electrical Engineering and Computer Science, and was co-authored by Amit Solomon and Wei Ann, both graduate students at MIT; Rabia Tugce Yazicigil, assistant professor of electrical and computer engineering at Boston University; Arslan Riaz and Vaibhav Bansal, both graduate students at Boston University; Ken R. Duffy, director of the Hamilton Institute at the National University of Ireland at Maynooth; and Kevin Galligan, a Maynooth graduate student. The research will be presented at the European Solid-States Device Research and Circuits Conference next week.

    Focus on noise

    One way to think of these codes is as redundant hashes (in this case, a series of 1s and 0s) added to the end of the original data. The rules for the creation of that hash are stored in a specific codebook.

    As the encoded data travel over a network, they are affected by noise, or energy that disrupts the signal, which is often generated by other electronic devices. When that coded data and the noise that affected them arrive at their destination, the decoding algorithm consults its codebook and uses the structure of the hash to guess what the stored information is.

    Instead, GRAND works by guessing the noise that affected the message, and uses the noise pattern to deduce the original information. GRAND generates a series of noise sequences in the order they are likely to occur, subtracts them from the received data, and checks to see if the resulting codeword is in a codebook.

    While the noise appears random in nature, it has a probabilistic structure that allows the algorithm to guess what it might be.

    “In a way, it is similar to troubleshooting. If someone brings their car into the shop, the mechanic doesn’t start by mapping the entire car to blueprints. Instead, they start by asking, ‘What is the most likely thing to go wrong?’ Maybe it just needs gas. If that doesn’t work, what’s next? Maybe the battery is dead?” Médard says.

    Novel hardware

    The GRAND chip uses a three-tiered structure, starting with the simplest possible solutions in the first stage and working up to longer and more complex noise patterns in the two subsequent stages. Each stage operates independently, which increases the throughput of the system and saves power.

    The device is also designed to switch seamlessly between two codebooks. It contains two static random-access memory chips, one that can crack codewords, while the other loads a new codebook and then switches to decoding without any downtime.

    The researchers tested the GRAND chip and found it could effectively decode any moderate redundancy code up to 128 bits in length, with only about a microsecond of latency.

    Médard and her collaborators had previously demonstrated the success of the algorithm, but this new work showcases the effectiveness and efficiency of GRAND in hardware for the first time.

    Developing hardware for the novel decoding algorithm required the researchers to first toss aside their preconceived notions, Médard says.

    “We couldn’t go out and reuse things that had already been done. This was like a complete whiteboard. We had to really think about every single component from scratch. It was a journey of reconsideration. And I think when we do our next chip, there will be things with this first chip that we’ll realize we did out of habit or assumption that we can do better,” she says.

    A chip for the future

    Since GRAND only uses codebooks for verification, the chip not only works with legacy codes but could also be used with codes that haven’t even been introduced yet.

    In the lead-up to 5G implementation, regulators and communications companies struggled to find consensus as to which codes should be used in the new network. Regulators ultimately chose to use two types of traditional codes for 5G infrastructure in different situations. Using GRAND could eliminate the need for that rigid standardization in the future, Médard says.

    The GRAND chip could even open the field of coding to a wave of innovation.

    “For reasons I’m not quite sure of, people approach coding with awe, like it is black magic. The process is mathematically nasty, so people just use codes that already exist. I’m hoping this will recast the discussion so it is not so standards-oriented, enabling people to use codes that already exist and create new codes,” she says.

    Moving forward, Médard and her collaborators plan to tackle the problem of soft detection with a retooled version of the GRAND chip. In soft detection, the received data are less precise.

    They also plan to test the ability of GRAND to crack longer, more complex codes and adjust the structure of the silicon chip to improve its energy efficiency.

    The research was funded by the Battelle Memorial Institute and Science Foundation of Ireland. More

  • in

    Using adversarial attacks to refine molecular energy predictions

    Neural networks (NNs) are increasingly being used to predict new materials, the rate and yield of chemical reactions, and drug-target interactions, among others. For these applications, they are orders of magnitude faster than traditional methods such as quantum mechanical simulations. 

    The price for this agility, however, is reliability. Because machine learning models only interpolate, they may fail when used outside the domain of training data.

    But the part that worried Rafael Gómez-Bombarelli, the Jeffrey Cheah Career Development Professor in the MIT Department of Materials Science and Engineering, and graduate students Daniel Schwalbe-Koda and Aik Rui Tan was that establishing the limits of these machine learning (ML) models is tedious and labor-intensive. 

    This is particularly true for predicting ‘‘potential energy surfaces” (PES), or the map of a molecule’s energy in all its configurations. These surfaces encode the complexities of a molecule into flatlands, valleys, peaks, troughs, and ravines. The most stable configurations of a system are usually in the deep pits — quantum mechanical chasms from which atoms and molecules typically do not escape. 

    In a recent Nature Communications paper, the research team presented a way to demarcate the “safe zone” of a neural network by using “adversarial attacks.” Adversarial attacks have been studied for other classes of problems, such as image classification, but this is the first time that they are being used to sample molecular geometries in a PES. 

    “People have been using uncertainty for active learning for years in ML potentials. The key difference is that they need to run the full ML simulation and evaluate if the NN was reliable, and if it wasn’t, acquire more data, retrain and re-simulate. Meaning that it takes a long time to nail down the right model, and one has to run the ML simulation many times” explains Gómez-Bombarelli.

    The Gómez-Bombarelli lab at MIT works on a synergistic synthesis of first-principles simulation and machine learning that greatly speeds up this process. The actual simulations are run only for a small fraction of these molecules, and all those data are fed into a neural network that learns how to predict the same properties for the rest of the molecules. They have successfully demonstrated these methods for a growing class of novel materials that includes catalysts for producing hydrogen from water, cheaper polymer electrolytes for electric vehicles,  zeolites for molecular sieving, magnetic materials, and more. 

    The challenge, however, is that these neural networks are only as smart as the data they are trained on.  Considering the PES map, 99 percent of the data may fall into one pit, totally missing valleys that are of more interest. 

    Such wrong predictions can have disastrous consequences — think of a self-driving car that fails to identify a person crossing the street.

    One way to find out the uncertainty of a model is to run the same data through multiple versions of it. 

    For this project, the researchers had multiple neural networks predict the potential energy surface from the same data. Where the network is fairly sure of the prediction, the variation between the outputs of different networks is minimal and the surfaces largely converge. When the network is uncertain, the predictions of different models vary widely, producing a range of outputs, any of which could be the correct surface. 

    The spread in the predictions of a “committee of neural networks” is the “uncertainty” at that point. A good model should not just indicate the best prediction, but also indicates the uncertainty about each of these predictions. It’s like the neural network says “this property for material A will have a value of X and I’m highly confident about it.”

    This could have been an elegant solution but for the sheer scale of the combinatorial space. “Each simulation (which is ground feed for the neural network) may take from tens to thousands of CPU hours,” explains Schwalbe-Koda. For the results to be meaningful, multiple models must be run over a sufficient number of points in the PES, an extremely time-consuming process. 

    Instead, the new approach only samples data points from regions of low prediction confidence, corresponding to specific geometries of a molecule. These molecules are then stretched or deformed slightly so that the uncertainty of the neural network committee is maximized. Additional data are computed for these molecules through simulations and then added to the initial training pool. 

    The neural networks are trained again, and a new set of uncertainties are calculated. This process is repeated until the uncertainty associated with various points on the surface becomes well-defined and cannot be decreased any further. 

    Gómez-Bombarelli explains, “We aspire to have a model that is perfect in the regions we care about (i.e., the ones that the simulation will visit) without having had to run the full ML simulation, by making sure that we make it very good in high-likelihood regions where it isn’t.”

    The paper presents several examples of this approach, including predicting complex supramolecular interactions in zeolites. These materials are cavernous crystals that act as molecular sieves with high shape selectivity. They find applications in catalysis, gas separation, and ion exchange, among others.

    Because performing simulations of large zeolite structures is very costly, the researchers show how their method can provide significant savings in computational simulations. They used more than 15,000 examples to train a neural network to predict the potential energy surfaces for these systems. Despite the large cost required to generate the dataset, the final results are mediocre, with only around 80 percent of the neural network-based simulations being successful. To improve the performance of the model using traditional active learning methods, the researchers calculated an additional 5,000 data points, which improved the performance of the neural network potentials to 92 percent.

    However, when the adversarial approach is used to retrain the neural networks, the authors saw a performance jump to 97 percent using only 500 extra points. That’s a remarkable result, the researchers say, especially considering that each of these extra points takes hundreds of CPU hours. 

    This could be the most realistic method to probe the limits of models that researchers use to predict the behavior of materials and the progress of chemical reactions. More

  • in

    Making the case for hydrogen in a zero-carbon economy

    As the United States races to achieve its goal of zero-carbon electricity generation by 2035, energy providers are swiftly ramping up renewable resources such as solar and wind. But because these technologies churn out electrons only when the sun shines and the wind blows, they need backup from other energy sources, especially during seasons of high electric demand. Currently, plants burning fossil fuels, primarily natural gas, fill in the gaps.

    “As we move to more and more renewable penetration, this intermittency will make a greater impact on the electric power system,” says Emre Gençer, a research scientist at the MIT Energy Initiative (MITEI). That’s because grid operators will increasingly resort to fossil-fuel-based “peaker” plants that compensate for the intermittency of the variable renewable energy (VRE) sources of sun and wind. “If we’re to achieve zero-carbon electricity, we must replace all greenhouse gas-emitting sources,” Gençer says.

    Low- and zero-carbon alternatives to greenhouse-gas emitting peaker plants are in development, such as arrays of lithium-ion batteries and hydrogen power generation. But each of these evolving technologies comes with its own set of advantages and constraints, and it has proven difficult to frame the debate about these options in a way that’s useful for policymakers, investors, and utilities engaged in the clean energy transition.

    Now, Gençer and Drake D. Hernandez SM ’21 have come up with a model that makes it possible to pin down the pros and cons of these peaker-plant alternatives with greater precision. Their hybrid technological and economic analysis, based on a detailed inventory of California’s power system, was published online last month in Applied Energy. While their work focuses on the most cost-effective solutions for replacing peaker power plants, it also contains insights intended to contribute to the larger conversation about transforming energy systems.

    “Our study’s essential takeaway is that hydrogen-fired power generation can be the more economical option when compared to lithium-ion batteries — even today, when the costs of hydrogen production, transmission, and storage are very high,” says Hernandez, who worked on the study while a graduate research assistant for MITEI. Adds Gençer, “If there is a place for hydrogen in the cases we analyzed, that suggests there is a promising role for hydrogen to play in the energy transition.”

    Adding up the costs

    California serves as a stellar paradigm for a swiftly shifting power system. The state draws more than 20 percent of its electricity from solar and approximately 7 percent from wind, with more VRE coming online rapidly. This means its peaker plants already play a pivotal role, coming online each evening when the sun goes down or when events such as heat waves drive up electricity use for days at a time.

    “We looked at all the peaker plants in California,” recounts Gençer. “We wanted to know the cost of electricity if we replaced them with hydrogen-fired turbines or with lithium-ion batteries.” The researchers used a core metric called the levelized cost of electricity (LCOE) as a way of comparing the costs of different technologies to each other. LCOE measures the average total cost of building and operating a particular energy-generating asset per unit of total electricity generated over the hypothetical lifetime of that asset.

    Selecting 2019 as their base study year, the team looked at the costs of running natural gas-fired peaker plants, which they defined as plants operating 15 percent of the year in response to gaps in intermittent renewable electricity. In addition, they determined the amount of carbon dioxide released by these plants and the expense of abating these emissions. Much of this information was publicly available.

    Coming up with prices for replacing peaker plants with massive arrays of lithium-ion batteries was also relatively straightforward: “There are no technical limitations to lithium-ion, so you can build as many as you want; but they are super expensive in terms of their footprint for energy storage and the mining required to manufacture them,” says Gençer.

    But then came the hard part: nailing down the costs of hydrogen-fired electricity generation. “The most difficult thing is finding cost assumptions for new technologies,” says Hernandez. “You can’t do this through a literature review, so we had many conversations with equipment manufacturers and plant operators.”

    The team considered two different forms of hydrogen fuel to replace natural gas, one produced through electrolyzer facilities that convert water and electricity into hydrogen, and another that reforms natural gas, yielding hydrogen and carbon waste that can be captured to reduce emissions. They also ran the numbers on retrofitting natural gas plants to burn hydrogen as opposed to building entirely new facilities. Their model includes identification of likely locations throughout the state and expenses involved in constructing these facilities.

    The researchers spent months compiling a giant dataset before setting out on the task of analysis. The results from their modeling were clear: “Hydrogen can be a more cost-effective alternative to lithium-ion batteries for peaking operations on a power grid,” says Hernandez. In addition, notes Gençer, “While certain technologies worked better in particular locations, we found that on average, reforming hydrogen rather than electrolytic hydrogen turned out to be the cheapest option for replacing peaker plants.”

    A tool for energy investors

    When he began this project, Gençer admits he “wasn’t hopeful” about hydrogen replacing natural gas in peaker plants. “It was kind of shocking to see in our different scenarios that there was a place for hydrogen.” That’s because the overall price tag for converting a fossil-fuel based plant to one based on hydrogen is very high, and such conversions likely won’t take place until more sectors of the economy embrace hydrogen, whether as a fuel for transportation or for varied manufacturing and industrial purposes.

    A nascent hydrogen production infrastructure does exist, mainly in the production of ammonia for fertilizer. But enormous investments will be necessary to expand this framework to meet grid-scale needs, driven by purposeful incentives. “With any of the climate solutions proposed today, we will need a carbon tax or carbon pricing; otherwise nobody will switch to new technologies,” says Gençer.

    The researchers believe studies like theirs could help key energy stakeholders make better-informed decisions. To that end, they have integrated their analysis into SESAME, a life cycle and techno-economic assessment tool for a range of energy systems that was developed by MIT researchers. Users can leverage this sophisticated modeling environment to compare costs of energy storage and emissions from different technologies, for instance, or to determine whether it is cost-efficient to replace a natural gas-powered plant with one powered by hydrogen.

    “As utilities, industry, and investors look to decarbonize and achieve zero-emissions targets, they have to weigh the costs of investing in low-carbon technologies today against the potential impacts of climate change moving forward,” says Hernandez, who is currently a senior associate in the energy practice at Charles River Associates. Hydrogen, he believes, will become increasingly cost-competitive as its production costs decline and markets expand.

    A study group member of MITEI’s soon-to-be published Future of Storage study, Gençer knows that hydrogen alone will not usher in a zero-carbon future. But, he says, “Our research shows we need to seriously consider hydrogen in the energy transition, start thinking about key areas where hydrogen should be used, and start making the massive investments necessary.”

    Funding for this research was provided by MITEI’s Low-Carbon Energy Centers and Future of Storage study. More

  • in

    3 Questions: Peko Hosoi on the data-driven reasoning behind MIT’s Covid-19 policies for the fall

    As students, faculty, and staff prepare for a full return to the MIT campus in the weeks ahead, procedures for entering buildings, navigating classrooms and labs, and interacting with friends and colleagues will likely take some getting used to.

    The Institute recently reinforced its policies for indoor masking and has also continued to require regular testing for people who live, work, or study on campus — procedures that apply to both vaccinated and unvaccinated individuals. Vaccination is required for all students, faculty, and staff on campus unless a medical or religious exemption is granted.

    These and other policies adopted by MIT to control the spread of Covid-19 have been informed by modeling efforts from a volunteer group of MIT faculty, students, and postdocs. The collaboration, dubbed Isolat, was co-founded by Anette “Peko” Hosoi, the Neil and Jane Pappalardo Professor of Mechanical Engineering and associate dean in the School of Engineering.

    The group, which is organized through MIT’s Institute for Data, Systems, and Society (IDSS), has run numerous models to show how measures such as mask wearing, testing, ventilation, and quarantining could affect Covid-19’s spread. These models have helped to shape MIT’s Covid-19 policies throughout the pandemic, including its procedures for returning to campus this fall.

    Hosoi spoke with MIT News about the data-backed reasoning behind some of these procedures, including indoor masking and regular testing, and how a “generous community” will help MIT safely weather the virus and its variants.

    Q: Take us through how you have been modeling Covid-19 and its variants, in regard to helping MIT shape its Covid policies. What’s the approach you’ve taken, and why?

    A: The approach we’re taking uses a simple counting exercise developed in IDSS to estimate the balance of testing, masking, and vaccination that is required to keep the virus in check. The underlying objective is to find infected people faster, on average, than they can infect others, which is captured in a simple algebraic expression. Our objective can be accomplished either by speeding up the rate of finding infected people (i.e. increasing testing frequency) or slowing down the rate of infection (i.e. increasing masking and vaccination) or by a combination of both. To give you a sense of the numbers, balances for different levels of testing are shown in the chart below for a vaccine efficacy of 67 percent and a contagious period of 18 days (which are the CDC’s latest parameters for the Delta variant).

    The vertical axis shows the now-famous reproduction number R0, i.e. the average number of people that one infected person will infect throughout the course of their illness. These R0 are averages for the population, and in specific circumstances the spreading could be more than that.

    Each blue line represents a different testing frequency: Below the line, the virus is controlled; above the line, it spreads. For example, the dotted blue line shows the boundary if we rely solely on vaccination with no testing. In that case, even if everyone is vaccinated, we can only control up to an R0 of about 3.  Unfortunately, the CDC places R0 of the Delta variant somewhere between 5 and 9, so vaccination alone is insufficient to control the spread. (As an aside, this also means that given the efficacy estimates for the current vaccines, herd immunity is not possible.)

    Next consider the dashed blue line, which represents the stability boundary if we test everyone once per week. If our vaccination rate is greater than about 90 percent, testing one time per week can control even the CDC’s most pessimistic estimate for the Delta variant’s R0.

    Q: In returning to campus over the next few weeks, indoor masking and regular testing are required of every MIT community member, even those who are vaccinated. What in your modeling has shown that each of these policies is necessary?

    A: Given that the chart above shows that vaccination and weekly testing are sufficient to control the virus, one should certainly ask “Why have we reinstated indoor masking?” The answer is related to the fact that, as a university, our population turns over once a year; every September we bring in a few thousand new people. Those people are coming from all over the world, and some of them may not have had the opportunity to get vaccinated yet. The good news is that MIT Medical has vaccines and will be administering them to any unvaccinated students as soon as they arrive; the bad news is that, as we all know, it takes three to five weeks for resistance to build up, depending on the vaccine. This means that we should think of August and September as a transition period during which the vaccination rates may fluctuate as new people arrive. 

    The other revelation that has informed our policies for September is the recent report from the CDC that infected vaccinated people carry roughly the same viral load as unvaccinated infected people. This suggests that vaccinated people — although they are highly unlikely to get seriously ill — are a consequential part of the transmission chain and can pass the virus along to others. So, in order to avoid giving the virus to people who are not yet fully vaccinated during the transition period, we all need to exercise a little extra care to give the newly vaccinated time for their immune systems to ramp up. 

    Q: As the fall progresses, what signs are you looking for that might shift decisions on masking and testing on campus?

    A: Eventually we will have to shift responsibility toward individuals rather than institutions, and allow people to make decisions about masks and testing based on their own risk tolerance. The success of the vaccines in suppressing severe illness will enable us to shift to a position in which our objective is not necessarily to control the spread of the virus, but rather to reduce the risk of serious outcomes to an acceptable level. There are many people who believe we need to make this adjustment and wean ourselves off pandemic living. They are right; we cannot continue like this forever. However, we have not played all our cards yet, and, in my opinion, we need to carefully consider what’s left in our hand before we abdicate institutional responsibility.

    The final ace we have to play is vaccinating kids. It is important to remember that we have many people in our community with kids who are too young to be vaccinated and, understandably, those parents do not want to bring Covid home to their children. Furthermore, our campus is not just a workplace; it is also home to thousands of people, some of whom have children living in our residences or attending an MIT childcare center. Given that context, and the high probability that a vaccine will be approved for children in the near future, it is my belief that our community has the empathy and fortitude to try to keep the virus in check until parents have the option to protect their children with vaccines. 

    Bearing in mind that children constitute an unprotected portion of our population, let me return to the original question and speculate on the fate of masks and testing in the fall. Regarding testing, the analysis suggests that we cannot give that up entirely if we would like to control the spread of the virus. Second, control of the virus is not the only benefit we get from testing. It also gives us situational awareness, serves as an early warning beacon, and provides information that individual members of the community can use as they make decisions about their own risk budget. Personally, I’ve been testing for a year now and I find it easy and reassuring. Honestly, it’s nice to know that I’m Covid-free before I see friends (outside!) or go home to my family.

    Regarding masks, there is always uncertainty around whether a new variant will arise or whether vaccine efficacy will fade, but, given the current parameters and our analysis, my hope is that we will be in a position to provide some relief on the mask mandate once the incoming members of our population have been fully vaccinated. I also suspect that whenever the mask mandate is lifted, masks are not likely to go away. There are certainly situations in which I will continue to wear a mask regardless of the mandate, and many in our community will continue to feel safer wearing masks even when they are not required.

    I believe that we are a generous community and that we will be willing to take precautions to help keep each other healthy. The students who were on campus last year did an outstanding job, and they have given me a tremendous amount of faith that we can be considerate and good to one another even in extremely trying times.

    Previous item
    Next item More

  • in

    Helping companies optimize their websites and mobile apps

    Creating a good customer experience increasingly means creating a good digital experience. But metrics like pageviews and clicks offer limited insight into how much customers actually like a digital product.

    That’s the problem the digital optimization company Amplitude is solving. Amplitude gives companies a clearer picture into how users interact with their digital products to help them understand exactly which features to promote or improve.

    “It’s all about using product data to drive your business,” says Amplitude CEO Spenser Skates ’10, who co-founded the company with Curtis Liu ’10 and Stanford University graduate Jeffrey Wang. “Mobile apps and websites are really complex. The average app or website will have thousands of things you can do with it. The question is how you know which of those things are driving a great user experience and which parts are really frustrating for users.”

    Amplitude’s database can gather millions of details about how users behave inside an app or website and allow customers to explore that information without needing data science degrees.

    “It provides an interface for very easy, accessible ways of looking at your data, understanding your data, and asking questions of that data,” Skates says.

    Amplitude, which recently announced it will be going public, is already helping 23 of the 100 largest companies in the U.S. Customers include media companies like NBC, tech companies like Twitter, and retail companies like Walmart.

    “Our platform helps businesses understand how people are using their apps and websites so they can create better versions of their products,” Skates says. “It’s all about creating a really compelling product.”

    Learning entrepreneurship

    The founders say their years at MIT were among the best of their lives. Skates and Liu were undergraduates from 2006 to 2010. Skates majored in biological engineering while Liu majored in mathematics and electrical engineering and computer science. The two first met as opponents in MIT’s Battlecode competition, in which students use artificial intelligence algorithms to control teams of robots that compete in a strategy game against other teams. The following year they teamed up.

    “There are a lot of parallels between what you’re trying to do in Battlecode and what you end up having to do in the early stages of a startup,” Liu says. “You have limited resources, limited time, and you’re trying to accomplish a goal. What we found is trying a lot of different things, putting our ideas out there and testing them with real data, really helped us focus on the things that actually mattered. That method of iteration and continual improvement set the foundation for how we approach building products and startups.”

    Liu and Skates next participated in the MIT $100K Entrepreneurship Competition with an idea for a cloud-based music streaming service. After graduation, Skates began working in finance and Liu got a job at Google, but they continued pursuing startup ideas on the side, including a website that let alumni see where their classmates ended up and a marketplace for finding photographers.

    A year after graduation, the founders decided to quit their jobs and work on a startup full time. Skates moved into Liu’s apartment in San Francisco, setting up a mattress on the floor, and they began working on a project that became Sonalight, a voice recognition app. As part of the project, the founders built an internal system to understand where users got stuck in the app and what features were used the most.

    Despite getting over 100,000 downloads, the founders decided Sonalight was a little too early for its time and started thinking their analytics feature could be useful to other companies. They spoke with about 30 different product teams to learn more about what companies wanted from their digital analytics. Amplitude was officially founded in 2012.

    Amplitude gathers fine details about digital product usage, parsing out individual features and actions to give customers a better view of how their products are being used. Using the data in Amplitude’s intuitive, no-code interface, customers can make strategic decisions like whether to launch a feature or change a distribution channel.

    The platform is designed to ease the bottlenecks that arise when executives, product teams, salespeople, and marketers want to answer questions about customer experience or behavior but need the data science team to crunch the numbers for them.

    “It’s a very collaborative interface to encourage customers to work together to understand how users are engaging with their apps,” Skates says.

    Amplitude’s database also uses machine learning to segment users, predict user outcomes, and uncover novel correlations. Earlier this year, the company unveiled a service called Recommend that helps companies create personalized user experiences across their entire platform in minutes. The service goes beyond demographics to personalize customer experiences based on what users have done or seen before within the product.

    “We’re very conscious on the privacy front,” Skates says. “A lot of analytics companies will resell your data to third parties or use it for advertising purposes. We don’t do any of that. We’re only here to provide product insights to our customers. We’re not using data to track you across the web. Everyone expects Netflix to use the data on what you’ve watched before to recommend what to watch next. That’s effectively what we’re helping other companies do.”

    Optimizing digital experiences

    The meditation app Calm is on a mission to help users build habits that improve their mental wellness. Using Amplitude, the company learned that users most often use the app to get better sleep and reduce stress. The insights helped Calm’s team double down on content geared toward those goals, launching “sleep stories” to help users unwind at the end of each day and adding content around anxiety relief and relaxation. Sleep stories are now Calm’s most popular type of content, and Calm has grown rapidly to millions of people around the world.

    Calm’s story shows the power of letting user behavior drive product decisions. Amplitude has also helped the online fundraising site GoFundMe increase donations by showing users more compelling campaigns and the exercise bike company Peloton realize the importance of social features like leaderboards.

    Moving forward, the founders believe Amplitude’s platform will continue helping companies adapt to an increasingly digital world in which users expect more compelling, personalized experiences.

    “If you think about the online experience for companies today compared to 10 years ago, now [digital] is the main point of contact, whether you’re a media company streaming content, a retail company, or a finance company,” Skates says. “That’s only going to continue. That’s where we’re trying to help.” More

  • in

    “AI for Impact” lives up to its name

    For entrepreneurial MIT students looking to put their skills to work for a greater good, the Media Arts and Sciences class MAS.664 (AI for Impact) has been a destination point. With the onset of the pandemic, that goal came into even sharper focus. Just weeks before the campus shut down in 2020, a team of students from the class launched a project that would make significant strides toward an open-source platform to identify coronavirus exposures without compromising personal privacy.

    Their work was at the heart of Safe Paths, one of the earliest contact tracing apps in the United States. The students joined with volunteers from other universities, medical centers, and companies to publish their code, alongside a well-received white paper describing the privacy-preserving, decentralized protocol, all while working with organizations wishing to launch the app within their communities. The app and related software eventually got spun out into the nonprofit PathCheck Foundation, which today engages with public health entities and is providing exposure notifications in Guam, Cyprus, Hawaii, Minnesota, Alabama, and Louisiana.

    The formation of Safe Paths demonstrates the special sense among MIT researchers that “we can launch something that can help people around the world,” notes Media Lab Associate Professor Ramesh Raskar, who teaches the class together with Media Lab Professor Alex “Sandy” Pentland and Media Lab Lecturer Joost Bonsen. “To have that kind of passion and ambition — but also the confidence that what you create here can actually be deployed globally — is kind of amazing.”

    AI for Impact, created by Pentland, began meeting two decades ago under the course name Development Ventures, and has nurtured multiple thriving businesses. Examples of class ventures that Pentland incubated or co-founded include Dimagi, Cogito, Ginger, Prosperia, and Sanergy.

    The aim-high challenge posed to each class is to come up with a business plan that touches a billion people, and it can’t all be in one country, Pentland explains. Not every class effort becomes a business, “but 20 percent to 30 percent of students start something, which is great for an entrepreneur class,” says Pentland.

    Opportunities for Impact

    The numbers behind Dimagi, for instance, are striking. Its core product CommCare has helped front-line health workers provide care for more than 400 million people in more than 130 countries around the world. When it comes to maternal and child care, Dimagi’s platform has registered one in every 110 pregnancies worldwide. This past year, several governments around the world deployed CommCare applications for Covid-19 response — from Sierra Leone and Somalia to New York and Colorado.

    Spinoffs like Cogito, Prosperia, and Ginger have likewise grown into highly successful companies. Cogito helps a million people a day gain access to the health care they need; Prosperia helps manage social support payments to 80 million people in Latin America; and Ginger handles mental health services for over 1 million people.

    The passion behind these and other class ventures points to a central idea of the class, Pentland notes: MIT students are often looking for ways to build entrepreneurial businesses that enable positive social change.

    During the spring 2021 class, for example, a number of promising student projects included tools to help residents of poor communities transition to owning their homes rather than renting, and to take better control of their community health.

    “It’s clear that the people who are graduating from here want to do something significant with their lives … they want to have an impact on their world,” Pentland says. “This class enables them to meet other people who are interested in doing the same thing, and offers them some help in starting a company to do it.”

    Many of the students who join the class come in with a broad set of interests. Guest lectures, case studies of other social entrepreneurship projects, and an introduction to a broad ecosystem of expertise and funding, then helps students to refine their general ideas into specific and viable projects.

    A path toward confronting a pandemic 

    Raskar began co-teaching the class in 2019, and brought a “Big AI” focus to the Development Ventures class, inspired by an AI for Impact team he had set up at his former employer, Facebook. “What I realized is that companies like Google or Facebook or Amazon actually have enough data about all of us that they can solve major problems in our society — climate, transportation, health, and so on,” he says. “This is something we should think about more seriously: how to use AI and data for positive social impact, while protecting privacy.”

    Early into the spring 2020 class, as students were beginning to consider their own projects, Raskar approached the class about the emerging coronavirus outbreak. Students like Kristen Vilcans recognized the urgency, and the opportunity. She and 10 other students joined forces to work on a project that would focus on Covid-19.

    “Students felt empowered to do something to help tackle the spread of this alarming new virus,” Raskar recalls. “They immediately began to develop data- and AI-based solutions to one of the most critical pieces of addressing a pandemic: halting the chain of infections. They created and launched one of the first digital contact tracing and exposure notification solutions in the U.S., developing an early alert system that engaged the public and protected privacy.” 

    Raskar looks back on the moment when a core group of students coalesced into a team. “It was very rare for a significant part of the class to just come together saying, ‘let’s do this, right away.’ It became as much a movement as a venture.”

    Group discussions soon began to center around an open-source, privacy-first digital set of tools for Covid-19 contact tracing. For the next two weeks, right up to the campus shutdown in March 2020, the team took over two adjacent conference rooms in the Media Lab, and started a Slack messaging channel devoted to the project. As the team members reached out to an ever-wider circle of friends, colleagues, and mentors, the number of participants grew to nearly 1,600 people, coming together virtually from all corners of the world.

    Kaushal Jain, a Harvard Business School student who had cross-registered for the spring 2020 class to get to know the MIT ecosystem, was also an early participant in Safe Paths. He wrote up an initial plan for the venture and began working with external organizations to figure out how to structure it into a nonprofit company. Jain eventually became the project’s lead for funding and partnerships.

    Vilcans, a graduate student in system design and management, served as Safe Paths’ communications lead through July 2020, while still working a part-time job at Draper Laboratory and taking classes.

    “There are these moments when you want to dive in, you want to contribute and you want to work nonstop,” she says, adding that the experience was also a wake-up call on how to manage burnout, and how to balance what you need as a person while contributing to a high-impact team. “That’s important to understand as a leader for the future.”

    MIT recognized Vilcan’s contributions later that year with the 2020 SDM Student Award for Leadership, Innovation, and Systems Thinking. 

    Jain, too, says the class gave him more than he could have expected.

    “I made strong friendships with like-minded people from very different backgrounds,” he says. “One key thing that I learned was to be flexible about the kind of work you want to do. Be open and see if there’s an opportunity, either through crisis or through something that you believe could really change a lot of things in the world. And then just go for it.” More

  • in

    Exact symbolic artificial intelligence for faster, better assessment of AI fairness

    The justice system, banks, and private companies use algorithms to make decisions that have profound impacts on people’s lives. Unfortunately, those algorithms are sometimes biased — disproportionately impacting people of color as well as individuals in lower income classes when they apply for loans or jobs, or even when courts decide what bail should be set while a person awaits trial.

    MIT researchers have developed a new artificial intelligence programming language that can assess the fairness of algorithms more exactly, and more quickly, than available alternatives.

    Their Sum-Product Probabilistic Language (SPPL) is a probabilistic programming system. Probabilistic programming is an emerging field at the intersection of programming languages and artificial intelligence that aims to make AI systems much easier to develop, with early successes in computer vision, common-sense data cleaning, and automated data modeling. Probabilistic programming languages make it much easier for programmers to define probabilistic models and carry out probabilistic inference — that is, work backward to infer probable explanations for observed data.

    “There are previous systems that can solve various fairness questions. Our system is not the first; but because our system is specialized and optimized for a certain class of models, it can deliver solutions thousands of times faster,” says Feras Saad, a PhD student in electrical engineering and computer science (EECS) and first author on a recent paper describing the work. Saad adds that the speedups are not insignificant: The system can be up to 3,000 times faster than previous approaches.

    SPPL gives fast, exact solutions to probabilistic inference questions such as “How likely is the model to recommend a loan to someone over age 40?” or “Generate 1,000 synthetic loan applicants, all under age 30, whose loans will be approved.” These inference results are based on SPPL programs that encode probabilistic models of what kinds of applicants are likely, a priori, and also how to classify them. Fairness questions that SPPL can answer include “Is there a difference between the probability of recommending a loan to an immigrant and nonimmigrant applicant with the same socioeconomic status?” or “What’s the probability of a hire, given that the candidate is qualified for the job and from an underrepresented group?”

    SPPL is different from most probabilistic programming languages, as SPPL only allows users to write probabilistic programs for which it can automatically deliver exact probabilistic inference results. SPPL also makes it possible for users to check how fast inference will be, and therefore avoid writing slow programs. In contrast, other probabilistic programming languages such as Gen and Pyro allow users to write down probabilistic programs where the only known ways to do inference are approximate — that is, the results include errors whose nature and magnitude can be hard to characterize.

    Error from approximate probabilistic inference is tolerable in many AI applications. But it is undesirable to have inference errors corrupting results in socially impactful applications of AI, such as automated decision-making, and especially in fairness analysis.

    Jean-Baptiste Tristan, associate professor at Boston College and former research scientist at Oracle Labs, who was not involved in the new research, says, “I’ve worked on fairness analysis in academia and in real-world, large-scale industry settings. SPPL offers improved flexibility and trustworthiness over other PPLs on this challenging and important class of problems due to the expressiveness of the language, its precise and simple semantics, and the speed and soundness of the exact symbolic inference engine.”

    SPPL avoids errors by restricting to a carefully designed class of models that still includes a broad class of AI algorithms, including the decision tree classifiers that are widely used for algorithmic decision-making. SPPL works by compiling probabilistic programs into a specialized data structure called a “sum-product expression.” SPPL further builds on the emerging theme of using probabilistic circuits as a representation that enables efficient probabilistic inference. This approach extends prior work on sum-product networks to models and queries expressed via a probabilistic programming language. However, Saad notes that this approach comes with limitations: “SPPL is substantially faster for analyzing the fairness of a decision tree, for example, but it can’t analyze models like neural networks. Other systems can analyze both neural networks and decision trees, but they tend to be slower and give inexact answers.”

    “SPPL shows that exact probabilistic inference is practical, not just theoretically possible, for a broad class of probabilistic programs,” says Vikash Mansinghka, an MIT principal research scientist and senior author on the paper. “In my lab, we’ve seen symbolic inference driving speed and accuracy improvements in other inference tasks that we previously approached via approximate Monte Carlo and deep learning algorithms. We’ve also been applying SPPL to probabilistic programs learned from real-world databases, to quantify the probability of rare events, generate synthetic proxy data given constraints, and automatically screen data for probable anomalies.”

    The new SPPL probabilistic programming language was presented in June at the ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI), in a paper that Saad co-authored with MIT EECS Professor Martin Rinard and Mansinghka. SPPL is implemented in Python and is available open source. More

  • in

    Finding common ground in Malden

    When disparate groups convene around a common goal, exciting things can happen.

    That is the inspiring story unfolding in Malden, Massachusetts, a city of about 60,000 — nearly half people of color — where a new type of community coalition continues to gain momentum on its plan to build a climate-resilient waterfront park along its river. The Malden River Works (MRW) project, recipient of the inaugural Leventhal City Prize, is seeking to connect to a contiguous greenway network where neighboring cities already have visitors coming to their parks and enjoying recreational boating. More important, the MRW is changing the model for how cities address civic growth, community engagement, equitable climate resilience, and environmental justice.                                                                                        

    The MRW’s steering committee consists of eight resident leaders of color, a resident environmental advocate, and three city representatives. One of the committee’s primary responsibilities is providing direction to the MRW’s project team, which includes urban designers, watershed and climate resilience planners, and a community outreach specialist. MIT’s Kathleen Vandiver, director of the Community Outreach Education and Engagement Core at MIT’s Center for Environmental Health Sciences (CEHS), and Marie Law Adams MArch ’06, a lecturer in the School of Architecture and Planning’s Department of Urban Studies and Planning (DUSP), serve on the project team.

    “This governance structure is somewhat unusual,” says Adams. “More typical is having city government as the primary decision-maker. It is important that one of the first things our team did was build a steering committee that is the decision maker on this project.”

    Evan Spetrini ’18 is the senior planner and policy manager for the Malden Redevelopment Authority and sits on both the steering committee and project team. He says placing the decision-making power with the steering committee and building it to be representative of marginalized communities was intentional. 

    “Changing that paradigm of power and decision-making in planning processes was the way we approached social resilience,” says Spetrini. “We have always intended this project to be a model for future planning projects in Malden.”

    This model ushers in a new history chapter for a city founded in 1640.

    Located about six miles north of Boston, Malden was home to mills and factories that used the Malden River for power, and a site for industrial waste over the last two centuries. Decades after the city’s industrial decline, there is little to no public access to the river. Many residents were not even aware there was a river in their city. Before the project was under way, Vandiver initiated a collaborative effort to evaluate the quality of the river’s water. Working with the Mystic River Watershed Association, Gradient Corporation, and CEHS, water samples were tested and a risk analysis conducted.

    “Having the study done made it clear the public could safely enjoy boating on the water,” says Vandiver. “It was a breakthrough that allowed people to see the river as an amenity.”

    A team effort

    Marcia Manong had never seen the river, but the Malden resident was persuaded to join the steering committee with the promise the project would be inclusive and of value to the community. Manong has been involved with civic engagement most of her life in the United States and for 20 years in South Africa.

    “It wasn’t going to be a marginalized, token-ized engagement,” says Manong. “It was clear to me that they were looking for people that would actually be sitting at the table.”

    Manong agreed to recruit additional people of color to join the team. From the beginning, she says, language was a huge barrier, given that nearly half of Malden’s residents do not speak English at home. Finding the translation efforts at their public events to be inadequate, the steering committee directed more funds to be made available for translation in several languages when public meetings began being held over Zoom this past year.

    “It’s unusual for most cities to spend this money, but our population is so diverse that we require it,” says Manong. “We have to do it. If the steering committee wasn’t raising this issue with the rest of the team, perhaps this would be overlooked.”

    Another alteration the steering committee has made is how the project engages with the community. While public attendance at meetings had been successful before the pandemic, Manong says they are “constantly working” to reach new people. One method has been to request invitations to attend the virtual meetings of other organizations to keep them apprised of the project.

    “We’ve said that people feel most comfortable when they’re in their own surroundings, so why not go where the people are instead of trying to get them to where we are,” says Manong.

    Buoyed by the $100,000 grant from MIT’s Norman B. Leventhal Center for Advanced Urbanism (LCAU) in 2019, the project team worked with Malden’s Department of Public Works, which is located along the river, to redesign its site and buildings and to study how to create a flood-resistant public open space as well as an elevated greenway path, connecting with other neighboring cities’ paths. The park’s plans also call for 75 new trees to reduce urban heat island effect, open lawn for gathering, and a dock for boating on the river.

    “The storm water infrastructure in these cities is old and isn’t going to be able to keep up with increased precipitation,” says Adams. “We’re looking for ways to store as much water as possible on the DPW site so we can hold it and release it more gradually into the river to avoid flooding.”

    The project along the 2.3-mile-long river continues to receive attention. Recently, the city of Malden was awarded a 2021 Accelerating Climate Resilience Grant of more than $50,000 from the state’s Metropolitan Area Planning Council and the Barr Foundation to support the project. Last fall, the project was awarded a $150,015 Municipal Vulnerability Preparedness Action Grant. Both awards are being directed to fund engineering work to refine the project’s design.

    “We — and in general, the planning profession — are striving to create more community empowerment in decision-making as to what happens to their community,” says Spetrini. “Putting the power in the community ensures that it’s actually responding to the needs of the community.”

    Contagious enthusiasm

    Manong says she’s happy she got involved with the project and believes the new governance structure is making a difference.

    “This project is definitely engaging with communities of color in a manner that is transformative and that is looking to build a long-lasting power dynamic built on trust,” she says. “It’s a new energized civic engagement and we’re making that happen. It’s very exciting.”

    Spetrini finds the challenge of creating an open space that’s publicly accessible and alongside an active work site professionally compelling.

    “There is a way to preserve the industrial employment base while also giving the public greater access to this natural resource,” he says. “It has real implications for other communities to follow this type of model.”

    Despite the pandemic this past year, enthusiasm for the project is palpable. For Spetrini, a Malden resident, it’s building “the first significant piece of what has been envisioned as the Malden River Greenway.” Adams sees the total project as a way to build social resilience as well as garnering community interest in climate resilience. For Vandiver, it’s the implications for improved community access.

    “From a health standpoint, everybody has learned from Covid-19 that the health aspects of walking in nature are really restorative,” says Vandiver. “Creating greater green space gives more attention to health issues. These are seemingly small side benefits, but they’re huge for mental health benefits.”

    Leventhal City Prize’s next cycle

    The Leventhal City Prize was established by the LCAU to catalyze innovative, interdisciplinary urban design, and planning approaches worldwide to improve both the environment and the quality of life for residents. Support for the LCAU was provided by the Muriel and Norman B. Leventhal Family Foundation and the Sherry and Alan Leventhal Family Foundation.

    “We’re thrilled with inaugural recipients of the award and the extensive work they’ve undertaken that is being held up as an exemplary model for others to learn from,” says Sarah Williams, LCAU director and a professor in DUSP. “Their work reflects the prize’s intent. We look forward to catalyzing these types of collaborative partnership in the next prize cycle.”

    Submissions for the next cycle of the Leventhal City Prize will open in early 2022.    More