More stories

  • in

    3 Questions: Designing software for research ethics

    Data are arguably the world’s hottest form of currency, clocking in zeros and ones that hold ever more weight than before. But with all of our personal information being crunched into dynamite for enterprise solutions and the like, with a lack of consumer data protection, are we all getting left behind? 

    Jonathan Zong, a PhD candidate in electrical engineering and computer science at MIT, and an affiliate of the Computer Science and Artificial Intelligence Laboratory, thinks consent can be baked into the design of the software that gathers our data for online research. He created Bartleby, a system for debriefing research participants and eliciting their views about social media research that involved them. Using Bartleby, he says, researchers can automatically direct each of their study participants to a website where they can learn about their involvement in research, view what data researchers collected about them, and give feedback. Most importantly, participants can use the website to opt out and request to delete their data.  

    Zong and his co-author, Nathan Matias SM ’13, PhD ’17, evaluated Bartleby by debriefing thousands of participants in observational and experimental studies on Twitter and Reddit. They found that Bartleby addresses procedural concerns by creating opportunities for participants to exercise autonomy, and the tool enabled substantive, value-driven conversations about participant voice and power. Here, Zong discusses the implications of their recent work as well as the future of social, ethical, and responsible computing.

    Q: Many leading tech ethicists and policymakers believe it’s impossible to keep people informed about their involvement in research and how their data are used. How has your work changed that?

    A: When Congress asked Mark Zuckerberg in 2018 about Facebook’s obligations to keep users informed about how their data is used, his answer was effectively that all users had the opportunity to read the privacy policy, and that being any clearer would be too difficult. Tech elites often blanket-statement that ethics is complicated, and proceed with their objective anyway. Many have claimed it’s impossible to fulfill ethical responsibilities to users at scale, so why try? But by creating Bartleby, a system for debriefing participants and eliciting their views about studies that involved them, we built something that shows that it’s not only very possible, but actually pretty easy to do. In a lot of situations, letting people know we want their data and explaining why we think it’s worth it is the bare minimum we could be doing.

    Q: Can ethical challenges be solved with a software tool?

    A: Off-the-shelf software actually can make a meaningful difference in respecting people’s autonomy. Ethics regulations almost never require a debriefing process for online studies. But because we used Bartleby, people had a chance to make an informed decision. It’s a chance they otherwise wouldn’t have had.

    At the same time, we realized that using Bartleby shined a light on deeper ethics questions that required substantive reflection. For example, most people are just trying to go about their lives and ignore the messages we send them, while others reply with concerns that aren’t even always about the research. Even if indirectly, these instances help signal nuances that research participants care about.

    Where might our values as researchers differ from participants’ values? How do the power structures that shape researchers’ interaction with users and communities affect our ability to see those differences? Using software to deliver ethics procedures helps bring these questions to light. But rather than expecting definitive answers that work in every situation, we should be thinking about how using software to create opportunities for participant voice and power challenges and invites us to reflect on how we address conflicting values.

    Q: How does your approach to design help suggest a way forward for social, ethical, and responsible computing?

    A: In addition to presenting the software tool, our peer-reviewed article on Bartleby also demonstrates a theoretical framework for data ethics, inspired by ideas in feminist philosophy. Because my work spans software design, empirical social science, and philosophy, I often think about the things I want people to take away in terms of interdisciplinary bridges I want to build. 

    I hope people look at Bartleby and see that ethics is an exciting area for technical innovation that can be tested empirically — guided by a clear-headed understanding of values. Umberto Eco, a philosopher, wrote that “form must not be a vehicle for thought, it must be a way of thinking.” In other words, designing software isn’t just about putting ideas we’ve already had into a computational form. Design is also a way we can think new ideas into existence, produce new ways of knowing and doing, and imagine alternative futures. More

  • in

    Estimating the informativeness of data

    Not all data are created equal. But how much information is any piece of data likely to contain? This question is central to medical testing, designing scientific experiments, and even to everyday human learning and thinking. MIT researchers have developed a new way to solve this problem, opening up new applications in medicine, scientific discovery, cognitive science, and artificial intelligence.

    In theory, the 1948 paper, “A Mathematical Theory of Communication,” by the late MIT Professor Emeritus Claude Shannon answered this question definitively. One of Shannon’s breakthrough results is the idea of entropy, which lets us quantify the amount of information inherent in any random object, including random variables that model observed data. Shannon’s results created the foundations of information theory and modern telecommunications. The concept of entropy has also proven central to computer science and machine learning.

    The challenge of estimating entropy

    Unfortunately, the use of Shannon’s formula can quickly become computationally intractable. It requires precisely calculating the probability of the data, which in turn requires calculating every possible way the data could have arisen under a probabilistic model. If the data-generating process is very simple — for example, a single toss of a coin or roll of a loaded die — then calculating entropies is straightforward. But consider the problem of medical testing, where a positive test result is the result of hundreds of interacting variables, all unknown. With just 10 unknowns, there are already 1,000 possible explanations for the data. With a few hundred, there are more possible explanations than atoms in the known universe, which makes calculating the entropy exactly an unmanageable problem.

    MIT researchers have developed a new method to estimate good approximations to many information quantities such as Shannon entropy by using probabilistic inference. The work appears in a paper presented at AISTATS 2022 by authors Feras Saad ’16, MEng ’16, a PhD candidate in electrical engineering and computer science; Marco-Cusumano Towner PhD ’21; and Vikash Mansinghka ’05, MEng ’09, PhD ’09, a principal research scientist in the Department of Brain and Cognitive Sciences. The key insight is, rather than enumerate all explanations, to instead use probabilistic inference algorithms to first infer which explanations are probable and then use these probable explanations to construct high-quality entropy estimates. The paper shows that this inference-based approach can be much faster and more accurate than previous approaches.

    Estimating entropy and information in a probabilistic model is fundamentally hard because it often requires solving a high-dimensional integration problem. Many previous works have developed estimators of these quantities for certain special cases, but the new estimators of entropy via inference (EEVI) offer the first approach that can deliver sharp upper and lower bounds on a broad set of information-theoretic quantities. An upper and lower bound means that although we don’t know the true entropy, we can get a number that is smaller than it and a number that is higher than it.

    “The upper and lower bounds on entropy delivered by our method are particularly useful for three reasons,” says Saad. “First, the difference between the upper and lower bounds gives a quantitative sense of how confident we should be about the estimates. Second, by using more computational effort we can drive the difference between the two bounds to zero, which ‘squeezes’ the true value with a high degree of accuracy. Third, we can compose these bounds to form estimates of many other quantities that tell us how informative different variables in a model are of one another.”

    Solving fundamental problems with data-driven expert systems

    Saad says he is most excited about the possibility that this method gives for querying probabilistic models in areas like machine-assisted medical diagnoses. He says one goal of the EEVI method is to be able to solve new queries using rich generative models for things like liver disease and diabetes that have already been developed by experts in the medical domain. For example, suppose we have a patient with a set of observed attributes (height, weight, age, etc.) and observed symptoms (nausea, blood pressure, etc.). Given these attributes and symptoms, EEVI can be used to help determine which medical tests for symptoms the physician should conduct to maximize information about the absence or presence of a given liver disease (like cirrhosis or primary biliary cholangitis).

    For insulin diagnosis, the authors showed how to use the method for computing optimal times to take blood glucose measurements that maximize information about a patient’s insulin sensitivity, given an expert-built probabilistic model of insulin metabolism and the patient’s personalized meal and medication schedule. As routine medical tracking like glucose monitoring moves away from doctor’s offices and toward wearable devices, there are even more opportunities to improve data acquisition, if the value of the data can be estimated accurately in advance.

    Vikash Mansinghka, senior author on the paper, adds, “We’ve shown that probabilistic inference algorithms can be used to estimate rigorous bounds on information measures that AI engineers often think of as intractable to calculate. This opens up many new applications. It also shows that inference may be more computationally fundamental than we thought. It also helps to explain how human minds might be able to estimate the value of information so pervasively, as a central building block of everyday cognition, and help us engineer AI expert systems that have these capabilities.”

    The paper, “Estimators of Entropy and Information via Inference in Probabilistic Models,” was presented at AISTATS 2022. More

  • in

    A new state of the art for unsupervised vision

    Labeling data can be a chore. It’s the main source of sustenance for computer-vision models; without it, they’d have a lot of difficulty identifying objects, people, and other important image characteristics. Yet producing just an hour of tagged and labeled data can take a whopping 800 hours of human time. Our high-fidelity understanding of the world develops as machines can better perceive and interact with our surroundings. But they need more help.

    Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), Microsoft, and Cornell University have attempted to solve this problem plaguing vision models by creating “STEGO,” an algorithm that can jointly discover and segment objects without any human labels at all, down to the pixel.

    STEGO learns something called “semantic segmentation” — fancy speak for the process of assigning a label to every pixel in an image. Semantic segmentation is an important skill for today’s computer-vision systems because images can be cluttered with objects. Even more challenging is that these objects don’t always fit into literal boxes; algorithms tend to work better for discrete “things” like people and cars as opposed to “stuff” like vegetation, sky, and mashed potatoes. A previous system might simply perceive a nuanced scene of a dog playing in the park as just a dog, but by assigning every pixel of the image a label, STEGO can break the image into its main ingredients: a dog, sky, grass, and its owner.

    Play video

    A new state of the art for unsupervised computer vision

    Assigning every single pixel of the world a label is ambitious — especially without any kind of feedback from humans. The majority of algorithms today get their knowledge from mounds of labeled data, which can take painstaking human-hours to source. Just imagine the excitement of labeling every pixel of 100,000 images! To discover these objects without a human’s helpful guidance, STEGO looks for similar objects that appear throughout a dataset. It then associates these similar objects together to construct a consistent view of the world across all of the images it learns from.

    Seeing the world

    Machines that can “see” are crucial for a wide array of new and emerging technologies like self-driving cars and predictive modeling for medical diagnostics. Since STEGO can learn without labels, it can detect objects in many different domains, even those that humans don’t yet understand fully. 

    “If you’re looking at oncological scans, the surface of planets, or high-resolution biological images, it’s hard to know what objects to look for without expert knowledge. In emerging domains, sometimes even human experts don’t know what the right objects should be,” says Mark Hamilton, a PhD student in electrical engineering and computer science at MIT, research affiliate of MIT CSAIL, software engineer at Microsoft, and lead author on a new paper about STEGO. “In these types of situations where you want to design a method to operate at the boundaries of science, you can’t rely on humans to figure it out before machines do.”

    STEGO was tested on a slew of visual domains spanning general images, driving images, and high-altitude aerial photographs. In each domain, STEGO was able to identify and segment relevant objects that were closely aligned with human judgments. STEGO’s most diverse benchmark was the COCO-Stuff dataset, which is made up of diverse images from all over the world, from indoor scenes to people playing sports to trees and cows. In most cases, the previous state-of-the-art system could capture a low-resolution gist of a scene, but struggled on fine-grained details: A human was a blob, a motorcycle was captured as a person, and it couldn’t recognize any geese. On the same scenes, STEGO doubled the performance of previous systems and discovered concepts like animals, buildings, people, furniture, and many others.

    STEGO not only doubled the performance of prior systems on the COCO-Stuff benchmark, but made similar leaps forward in other visual domains. When applied to driverless car datasets, STEGO successfully segmented out roads, people, and street signs with much higher resolution and granularity than previous systems. On images from space, the system broke down every single square foot of the surface of the Earth into roads, vegetation, and buildings. 

    Connecting the pixels

    STEGO — which stands for “Self-supervised Transformer with Energy-based Graph Optimization” — builds on top of the DINO algorithm, which learned about the world through 14 million images from the ImageNet database. STEGO refines the DINO backbone through a learning process that mimics our own way of stitching together pieces of the world to make meaning. 

    For example, you might consider two images of dogs walking in the park. Even though they’re different dogs, with different owners, in different parks, STEGO can tell (without humans) how each scene’s objects relate to each other. The authors even probe STEGO’s mind to see how each little, brown, furry thing in the images are similar, and likewise with other shared objects like grass and people. By connecting objects across images, STEGO builds a consistent view of the word.

    “The idea is that these types of algorithms can find consistent groupings in a largely automated fashion so we don’t have to do that ourselves,” says Hamilton. “It might have taken years to understand complex visual datasets like biological imagery, but if we can avoid spending 1,000 hours combing through data and labeling it, we can find and discover new information that we might have missed. We hope this will help us understand the visual word in a more empirically grounded way.”

    Looking ahead

    Despite its improvements, STEGO still faces certain challenges. One is that labels can be arbitrary. For example, the labels of the COCO-Stuff dataset distinguish between “food-things” like bananas and chicken wings, and “food-stuff” like grits and pasta. STEGO doesn’t see much of a distinction there. In other cases, STEGO was confused by odd images — like one of a banana sitting on a phone receiver — where the receiver was labeled “foodstuff,” instead of “raw material.” 

    For upcoming work, they’re planning to explore giving STEGO a bit more flexibility than just labeling pixels into a fixed number of classes as things in the real world can sometimes be multiple things at the same time (like “food”, “plant” and “fruit”). The authors hope this will give the algorithm room for uncertainty, trade-offs, and more abstract thinking.

    “In making a general tool for understanding potentially complicated datasets, we hope that this type of an algorithm can automate the scientific process of object discovery from images. There’s a lot of different domains where human labeling would be prohibitively expensive, or humans simply don’t even know the specific structure, like in certain biological and astrophysical domains. We hope that future work enables application to a very broad scope of datasets. Since you don’t need any human labels, we can now start to apply ML tools more broadly,” says Hamilton.

    “STEGO is simple, elegant, and very effective. I consider unsupervised segmentation to be a benchmark for progress in image understanding, and a very difficult problem. The research community has made terrific progress in unsupervised image understanding with the adoption of transformer architectures,” says Andrea Vedaldi, professor of computer vision and machine learning and a co-lead of the Visual Geometry Group at the engineering science department of the University of Oxford. “This research provides perhaps the most direct and effective demonstration of this progress on unsupervised segmentation.” 

    Hamilton wrote the paper alongside MIT CSAIL PhD student Zhoutong Zhang, Assistant Professor Bharath Hariharan of Cornell University, Associate Professor Noah Snavely of Cornell Tech, and MIT professor William T. Freeman. They will present the paper at the 2022 International Conference on Learning Representations (ICLR).  More

  • in

    Frequent encounters build familiarity

    Do better spatial networks make for better neighbors? There is evidence that they do, according to Paige Bollen, a sixth-year political science graduate student at MIT. The networks Bollen works with are not virtual but physical, part of the built environment in which we are all embedded. Her research on urban spaces suggests that the routes bringing people together or keeping them apart factor significantly in whether individuals see each other as friend or foe.

    “We all live in networks of streets, and come across different types of people,” says Bollen. “Just passing by others provides information that informs our political and social views of the world.” In her doctoral research, Bollen is revealing how physical context matters in determining whether such ordinary encounters engender suspicion or even hostility, while others can lead to cooperation and tolerance.

    Through her in-depth studies mapping the movement of people in urban communities in Ghana and South Africa, Bollen is demonstrating that even in diverse communities, “when people repeatedly come into contact, even if that contact is casual, they can build understanding that can lead to cooperation and positive outcomes,” she says. “My argument is that frequent, casual contact, facilitated by street networks, can make people feel more comfortable with those unlike themselves,” she says.

    Mapping urban networks

    Bollen’s case for the benefits of casual contact emerged from her pursuit of several related questions: Why do people in urban areas who regard other ethnic groups with prejudice and economic envy nevertheless manage to collaborate for a collective good? How do you reduce fears that arise from differences? How do the configuration of space and the built environment influence contact patterns among people?

    While other social science research suggests that there are weak ties in ethnically mixed urban communities, with casual contact exacerbating hostility, Bollen noted that there were plenty of examples of “cooperation across ethnic divisions in ethnically mixed communities.” She absorbed the work of psychologist Stanley Milgram, whose 1972 research showed that strangers seen frequently in certain places become familiar — less anonymous or threatening. So she set out to understand precisely how “the built environment of a neighborhood interacts with its demography to create distinct patterns of contact between social groups.”

    With the support of MIT Global Diversity Lab and MIT GOV/LAB, Bollen set out to develop measures of intergroup contact in cities in Ghana and South Africa. She uses street network data to predict contact patterns based on features of the built environment and then combines these measures with mobility data on peoples’ actual movement.

    “I created a huge dataset for every intersection in these cities, to determine the central nodes where many people are passing through,” she says. She combined these datasets with census data to determine which social groups were most likely to use specific intersections based on their position in a particular street network. She mapped these measures of casual contact to outcomes, such as inter-ethnic cooperation in Ghana and voting behavior in South Africa.

    “My analysis [in Ghana] showed that in areas that are more ethnically heterogeneous and where there are more people passing through intersections, we find more interconnections among people and more cooperation within communities in community development efforts,” she says.

    In a related survey experiment conducted on Facebook with 1,200 subjects, Bollen asked Accra residents if they would help an unknown non-co-ethnic in need with a financial gift. She found that the likelihood of offering such help was strongly linked to the frequency of interactions. “Helping behavior occurred when the subjects believed they would see this person again, even when they did not know the person in need well,” says Bollen. “They figured if they helped, they could count on this person’s reciprocity in the future.”

    For Bollen, this was “a powerful gut check” for her hypothesis that “frequency builds familiarity, because frequency provides information and drives expectations, which means it can reduce uncertainty and fear of the other.”

    In research underway in South Africa, a nation increasingly dealing with anti-immigrant violence, Bollen is investigating whether frequency of contact reduces prejudice against foreigners. Using her detailed street maps, 1.1 billion unique geolocated cellphone pings, and election data, she finds that frequent contact opportunities with immigrants are associated with lower support for anti-immigrant party voting.    Passion for places and spaces

    Bollen never anticipated becoming a political scientist. The daughter of two academics, she was “bent on becoming a data scientist.” But she was also “always interested in why people behave in certain ways and how this influences macro trends.”

    As an undergraduate at Tufts University, she became interested in international affairs. But it was her 2013 fieldwork studying women-only carriages in Delhi, India’s metro system, that proved formative. “I interviewed women for a month, talking to them about how these cars enabled them to participate in public life,” she recalls. Another project involving informal transportation routes in Cape Town, South Africa, immersed her more deeply in the questions of people’s experience of public space. “I left college thinking about mobility and public space, and I discovered how much I love geographic information systems,” she says.

    A gig with the Commonwealth of Massachusetts to improve the 911 emergency service — updating and cleaning geolocations of addresses using Google Street View — further piqued her interest. “The job was tedious, but I realized you can really understand a place, and how people move around, from these images.” Bollen began thinking about a career in urban planning.

    Then a two-year stint as a researcher at MIT GOV/LAB brought Bollen firmly into the political science fold. Working with Lily Tsai, the Ford Professor of Political Science, on civil society partnerships in the developing world, Bollen realized that “political science wasn’t what I thought it was,” she says. “You could bring psychology, economics, and sociology into thinking about politics.” Her decision to join the doctoral program was simple: “I knew and loved the people I was with at MIT.”

    Bollen has not regretted that decision. “All the things I’ve been interested in are finally coming together in my dissertation,” she says. Due to the pandemic, questions involving space, mobility, and contact became sharper to her. “I shifted my research emphasis from asking people about inter-ethnic differences and inequality through surveys, to using contact and context information to measure these variables.”

    She sees a number of applications for her work, including working with civil society organizations in communities touched by ethnic or other frictions “to rethink what we know about contact, challenging some of the classic things we think we know.”

    As she moves into the final phases of her dissertation, which she hopes to publish as a book, Bollen also relishes teaching comparative politics to undergraduates. “There’s something so fun engaging with them, and making their arguments stronger,” she says. With the long process of earning a PhD, this helps her “enjoy what she is doing every single day.” More

  • in

    MIT Schwarzman College of Computing unveils Break Through Tech AI

    Aimed at driving diversity and inclusion in artificial intelligence, the MIT Stephen A. Schwarzman College of Computing is launching Break Through Tech AI, a new program to bridge the talent gap for women and underrepresented genders in AI positions in industry.

    Break Through Tech AI will provide skills-based training, industry-relevant portfolios, and mentoring to qualified undergraduate students in the Greater Boston area in order to position them more competitively for careers in data science, machine learning, and artificial intelligence. The free, 18-month program will also provide each student with a stipend for participation to lower the barrier for those typically unable to engage in an unpaid, extra-curricular educational opportunity.

    “Helping position students from diverse backgrounds to succeed in fields such as data science, machine learning, and artificial intelligence is critical for our society’s future,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “We look forward to working with students from across the Greater Boston area to provide them with skills and mentorship to help them find careers in this competitive and growing industry.”

    The college is collaborating with Break Through Tech — a national initiative launched by Cornell Tech in 2016 to increase the number of women and underrepresented groups graduating with degrees in computing — to host and administer the program locally. In addition to Boston, the inaugural artificial intelligence and machine learning program will be offered in two other metropolitan areas — one based in New York hosted by Cornell Tech and another in Los Angeles hosted by the University of California at Los Angeles Samueli School of Engineering.

    “Break Through Tech’s success at diversifying who is pursuing computer science degrees and careers has transformed lives and the industry,” says Judith Spitz, executive director of Break Through Tech. “With our new collaborators, we can apply our impactful model to drive inclusion and diversity in artificial intelligence.”

    The new program will kick off this summer at MIT with an eight-week, skills-based online course and in-person lab experience that teaches industry-relevant tools to build real-world AI solutions. Students will learn how to analyze datasets and use several common machine learning libraries to build, train, and implement their own ML models in a business context.

    Following the summer course, students will be matched with machine-learning challenge projects for which they will convene monthly at MIT and work in teams to build solutions and collaborate with an industry advisor or mentor throughout the academic year, resulting in a portfolio of resume-quality work. The participants will also be paired with young professionals in the field to help build their network, prepare their portfolio, practice for interviews, and cultivate workplace skills.

    “Leveraging the college’s strong partnership with industry, Break Through AI will offer unique opportunities to students that will enhance their portfolio in machine learning and AI,” says Asu Ozdaglar, deputy dean of academics of the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science. Ozdaglar, who will be the MIT faculty director of Break Through Tech AI, adds: “The college is committed to making computing inclusive and accessible for all. We’re thrilled to host this program at MIT for the Greater Boston area and to do what we can to help increase diversity in computing fields.”

    Break Through Tech AI is part of the MIT Schwarzman College of Computing’s focus to advance diversity, equity, and inclusion in computing. The college aims to improve and create programs and activities that broaden participation in computing classes and degree programs, increase the diversity of top faculty candidates in computing fields, and ensure that faculty search and graduate admissions processes have diverse slates of candidates and interviews.

    “By engaging in activities like Break Through Tech AI that work to improve the climate for underrepresented groups, we’re taking an important step toward creating more welcoming environments where all members can innovate and thrive,” says Alana Anderson, assistant dean for diversity, equity and inclusion for the Schwarzman College of Computing. More

  • in

    Emery Brown earns American Institute for Medical and Biological Engineering Pierre Galletti Award

    The American Institute for Medical and Biological Engineering has awarded its highest honor this year to Emery N. Brown, the Edward Hood Taplin Professor of Computational Neuroscience and Health Sciences and Technology in The Picower Institute for Learning and Memory and the Institute for Medical Engineering and Science at MIT.

    Brown, who is also an anesthesiologist at Massachusetts General Hospital and the Warren M. Zapol Professor at Harvard Medical School, received the 2022 Pierre M. Galletti Award during the national organization’s Annual Event held on March 25.

    For decades, Brown’s lab has uniquely unified three fields: neuroscience, statistics, and anesthesiology. He is renowned for the development of statistical methods and signal-processing algorithms to enable and improve analysis of neural activity measurements. The work has had numerous applications including studies of learning and memory, brain-computer interfaces, and systems neuroscience. He has also pioneered investigations of how general anesthetic drugs work in the brain to induce and maintain simultaneous but reversible states of unconsciousness, amnesia, immobility, and analgesia. Building on these improvements in fundamental understanding, his lab engineers systems to improve monitoring of patient state and anesthetic dosing during surgery. Optimizing doses of general anesthetic drugs can improve patient care in many ways, including by minimizing side effects such as post-operative delirium and by improving post-operative pain management.

    AIMBE said Brown earned the award in recognition of his “significant contributions to neuroscience data analysis and for characterizing the neurophysiology of anesthesia-induced unconsciousness and demonstrating how it can be reliably monitored in real time using electroencephalogram recordings.”

    Brown, who is also a faculty member in MIT’s Department of Brain and Cognitive Sciences, is now working to develop a research center at MIT dedicated to taking neuroscience-based approaches to advance anesthesiology.

    “I am extremely honored and grateful to the AIMBE for choosing me to receive the 2022 Galletti Award in recognition of my research deciphering the neuroscience of how anesthetics work,” he says. “I would like to express my gratitude to my collaborators, post-doctoral fellows, students, research assistants, and clinical coordinators who have made this possible.” More

  • in

    Does this artificial intelligence think like a human?

    In machine learning, understanding why a model makes certain decisions is often just as important as whether those decisions are correct. For instance, a machine-learning model might correctly predict that a skin lesion is cancerous, but it could have done so using an unrelated blip on a clinical photo.

    While tools exist to help experts make sense of a model’s reasoning, often these methods only provide insights on one decision at a time, and each must be manually evaluated. Models are commonly trained using millions of data inputs, making it almost impossible for a human to evaluate enough decisions to identify patterns.

    Now, researchers at MIT and IBM Research have created a method that enables a user to aggregate, sort, and rank these individual explanations to rapidly analyze a machine-learning model’s behavior. Their technique, called Shared Interest, incorporates quantifiable metrics that compare how well a model’s reasoning matches that of a human.

    Shared Interest could help a user easily uncover concerning trends in a model’s decision-making — for example, perhaps the model often becomes confused by distracting, irrelevant features, like background objects in photos. Aggregating these insights could help the user quickly and quantitatively determine whether a model is trustworthy and ready to be deployed in a real-world situation.

    “In developing Shared Interest, our goal is to be able to scale up this analysis process so that you could understand on a more global level what your model’s behavior is,” says lead author Angie Boggust, a graduate student in the Visualization Group of the Computer Science and Artificial Intelligence Laboratory (CSAIL).

    Boggust wrote the paper with her advisor, Arvind Satyanarayan, an assistant professor of computer science who leads the Visualization Group, as well as Benjamin Hoover and senior author Hendrik Strobelt, both of IBM Research. The paper will be presented at the Conference on Human Factors in Computing Systems.

    Boggust began working on this project during a summer internship at IBM, under the mentorship of Strobelt. After returning to MIT, Boggust and Satyanarayan expanded on the project and continued the collaboration with Strobelt and Hoover, who helped deploy the case studies that show how the technique could be used in practice.

    Human-AI alignment

    Shared Interest leverages popular techniques that show how a machine-learning model made a specific decision, known as saliency methods. If the model is classifying images, saliency methods highlight areas of an image that are important to the model when it made its decision. These areas are visualized as a type of heatmap, called a saliency map, that is often overlaid on the original image. If the model classified the image as a dog, and the dog’s head is highlighted, that means those pixels were important to the model when it decided the image contains a dog.

    Shared Interest works by comparing saliency methods to ground-truth data. In an image dataset, ground-truth data are typically human-generated annotations that surround the relevant parts of each image. In the previous example, the box would surround the entire dog in the photo. When evaluating an image classification model, Shared Interest compares the model-generated saliency data and the human-generated ground-truth data for the same image to see how well they align.

    The technique uses several metrics to quantify that alignment (or misalignment) and then sorts a particular decision into one of eight categories. The categories run the gamut from perfectly human-aligned (the model makes a correct prediction and the highlighted area in the saliency map is identical to the human-generated box) to completely distracted (the model makes an incorrect prediction and does not use any image features found in the human-generated box).

    “On one end of the spectrum, your model made the decision for the exact same reason a human did, and on the other end of the spectrum, your model and the human are making this decision for totally different reasons. By quantifying that for all the images in your dataset, you can use that quantification to sort through them,” Boggust explains.

    The technique works similarly with text-based data, where key words are highlighted instead of image regions.

    Rapid analysis

    The researchers used three case studies to show how Shared Interest could be useful to both nonexperts and machine-learning researchers.

    In the first case study, they used Shared Interest to help a dermatologist determine if he should trust a machine-learning model designed to help diagnose cancer from photos of skin lesions. Shared Interest enabled the dermatologist to quickly see examples of the model’s correct and incorrect predictions. Ultimately, the dermatologist decided he could not trust the model because it made too many predictions based on image artifacts, rather than actual lesions.

    “The value here is that using Shared Interest, we are able to see these patterns emerge in our model’s behavior. In about half an hour, the dermatologist was able to make a confident decision of whether or not to trust the model and whether or not to deploy it,” Boggust says.

    In the second case study, they worked with a machine-learning researcher to show how Shared Interest can evaluate a particular saliency method by revealing previously unknown pitfalls in the model. Their technique enabled the researcher to analyze thousands of correct and incorrect decisions in a fraction of the time required by typical manual methods.

    In the third case study, they used Shared Interest to dive deeper into a specific image classification example. By manipulating the ground-truth area of the image, they were able to conduct a what-if analysis to see which image features were most important for particular predictions.   

    The researchers were impressed by how well Shared Interest performed in these case studies, but Boggust cautions that the technique is only as good as the saliency methods it is based upon. If those techniques contain bias or are inaccurate, then Shared Interest will inherit those limitations.

    In the future, the researchers want to apply Shared Interest to different types of data, particularly tabular data which is used in medical records. They also want to use Shared Interest to help improve current saliency techniques. Boggust hopes this research inspires more work that seeks to quantify machine-learning model behavior in ways that make sense to humans.

    This work is funded, in part, by the MIT-IBM Watson AI Lab, the United States Air Force Research Laboratory, and the United States Air Force Artificial Intelligence Accelerator. More

  • in

    Ocean vital signs

    Without the ocean, the climate crisis would be even worse than it is. Each year, the ocean absorbs billions of tons of carbon from the atmosphere, preventing warming that greenhouse gas would otherwise cause. Scientists estimate about 25 to 30 percent of all carbon released into the atmosphere by both human and natural sources is absorbed by the ocean.

    “But there’s a lot of uncertainty in that number,” says Ryan Woosley, a marine chemist and a principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) at MIT. Different parts of the ocean take in different amounts of carbon depending on many factors, such as the season and the amount of mixing from storms. Current models of the carbon cycle don’t adequately capture this variation.

    To close the gap, Woosley and a team of other MIT scientists developed a research proposal for the MIT Climate Grand Challenges competition — an Institute-wide campaign to catalyze and fund innovative research addressing the climate crisis. The team’s proposal, “Ocean Vital Signs,” involves sending a fleet of sailing drones to cruise the oceans taking detailed measurements of how much carbon the ocean is really absorbing. Those data would be used to improve the precision of global carbon cycle models and improve researchers’ ability to verify emissions reductions claimed by countries.

    “If we start to enact mitigation strategies—either through removing CO2 from the atmosphere or reducing emissions — we need to know where CO2 is going in order to know how effective they are,” says Woosley. Without more precise models there’s no way to confirm whether observed carbon reductions were thanks to policy and people, or thanks to the ocean.

    “So that’s the trillion-dollar question,” says Woosley. “If countries are spending all this money to reduce emissions, is it enough to matter?”

    In February, the team’s Climate Grand Challenges proposal was named one of 27 finalists out of the almost 100 entries submitted. From among this list of finalists, MIT will announce in April the selection of five flagship projects to receive further funding and support.

    Woosley is leading the team along with Christopher Hill, a principal research engineer in EAPS. The team includes physical and chemical oceanographers, marine microbiologists, biogeochemists, and experts in computational modeling from across the department, in addition to collaborators from the Media Lab and the departments of Mathematics, Aeronautics and Astronautics, and Electrical Engineering and Computer Science.

    Today, data on the flux of carbon dioxide between the air and the oceans are collected in a piecemeal way. Research ships intermittently cruise out to gather data. Some commercial ships are also fitted with sensors. But these present a limited view of the entire ocean, and include biases. For instance, commercial ships usually avoid storms, which can increase the turnover of water exposed to the atmosphere and cause a substantial increase in the amount of carbon absorbed by the ocean.

    “It’s very difficult for us to get to it and measure that,” says Woosley. “But these drones can.”

    If funded, the team’s project would begin by deploying a few drones in a small area to test the technology. The wind-powered drones — made by a California-based company called Saildrone — would autonomously navigate through an area, collecting data on air-sea carbon dioxide flux continuously with solar-powered sensors. This would then scale up to more than 5,000 drone-days’ worth of observations, spread over five years, and in all five ocean basins.

    Those data would be used to feed neural networks to create more precise maps of how much carbon is absorbed by the oceans, shrinking the uncertainties involved in the models. These models would continue to be verified and improved by new data. “The better the models are, the more we can rely on them,” says Woosley. “But we will always need measurements to verify the models.”

    Improved carbon cycle models are relevant beyond climate warming as well. “CO2 is involved in so much of how the world works,” says Woosley. “We’re made of carbon, and all the other organisms and ecosystems are as well. What does the perturbation to the carbon cycle do to these ecosystems?”

    One of the best understood impacts is ocean acidification. Carbon absorbed by the ocean reacts to form an acid. A more acidic ocean can have dire impacts on marine organisms like coral and oysters, whose calcium carbonate shells and skeletons can dissolve in the lower pH. Since the Industrial Revolution, the ocean has become about 30 percent more acidic on average.

    “So while it’s great for us that the oceans have been taking up the CO2, it’s not great for the oceans,” says Woosley. “Knowing how this uptake affects the health of the ocean is important as well.” More