More stories

  • in

    Supporting sustainability, digital health, and the future of work

    The MIT and Accenture Convergence Initiative for Industry and Technology has selected three new research projects that will receive support from the initiative. The research projects aim to accelerate progress in meeting complex societal needs through new business convergence insights in technology and innovation.

    Established in MIT’s School of Engineering and now in its third year, the MIT and Accenture Convergence Initiative is furthering its mission to bring together technological experts from across business and academia to share insights and learn from one another. Recently, Thomas W. Malone, the Patrick J. McGovern (1959) Professor of Management, joined the initiative as its first-ever faculty lead. The research projects relate to three of the initiative’s key focus areas: sustainability, digital health, and the future of work.

    “The solutions these research teams are developing have the potential to have tremendous impact,” says Anantha Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “They embody the initiative’s focus on advancing data-driven research that addresses technology and industry convergence.”

    “The convergence of science and technology driven by advancements in generative AI, digital twins, quantum computing, and other technologies makes this an especially exciting time for Accenture and MIT to be undertaking this joint research,” says Kenneth Munie, senior managing director at Accenture Strategy, Life Sciences. “Our three new research projects focusing on sustainability, digital health, and the future of work have the potential to help guide and shape future innovations that will benefit the way we work and live.”

    The MIT and Accenture Convergence Initiative charter project researchers are described below.

    Accelerating the journey to net zero with industrial clusters

    Jessika Trancik is a professor at the Institute for Data, Systems, and Society (IDSS). Trancik’s research examines the dynamic costs, performance, and environmental impacts of energy systems to inform climate policy and accelerate beneficial and equitable technology innovation. Trancik’s project aims to identify how industrial clusters can enable companies to derive greater value from decarbonization, potentially making companies more willing to invest in the clean energy transition.

    To meet the ambitious climate goals that have been set by countries around the world, rising greenhouse gas emissions trends must be rapidly reversed. Industrial clusters — geographically co-located or otherwise-aligned groups of companies representing one or more industries — account for a significant portion of greenhouse gas emissions globally. With major energy consumers “clustered” in proximity, industrial clusters provide a potential platform to scale low-carbon solutions by enabling the aggregation of demand and the coordinated investment in physical energy supply infrastructure.

    In addition to Trancik, the research team working on this project will include Aliza Khurram, a postdoc in IDSS; Micah Ziegler, an IDSS research scientist; Melissa Stark, global energy transition services lead at Accenture; Laura Sanderfer, strategy consulting manager at Accenture; and Maria De Miguel, strategy senior analyst at Accenture.

    Eliminating childhood obesity

    Anette “Peko” Hosoi is the Neil and Jane Pappalardo Professor of Mechanical Engineering. A common theme in her work is the fundamental study of shape, kinematic, and rheological optimization of biological systems with applications to the emergent field of soft robotics. Her project will use both data from existing studies and synthetic data to create a return-on-investment (ROI) calculator for childhood obesity interventions so that companies can identify earlier returns on their investment beyond reduced health-care costs.

    Childhood obesity is too prevalent to be solved by a single company, industry, drug, application, or program. In addition to the physical and emotional impact on children, society bears a cost through excess health care spending, lost workforce productivity, poor school performance, and increased family trauma. Meaningful solutions require multiple organizations, representing different parts of society, working together with a common understanding of the problem, the economic benefits, and the return on investment. ROI is particularly difficult to defend for any single organization because investment and return can be separated by many years and involve asymmetric investments, returns, and allocation of risk. Hosoi’s project will consider the incentives for a particular entity to invest in programs in order to reduce childhood obesity.

    Hosoi will be joined by graduate students Pragya Neupane and Rachael Kha, both of IDSS, as well a team from Accenture that includes Kenneth Munie, senior managing director at Accenture Strategy, Life Sciences; Kaveh Safavi, senior managing director in Accenture Health Industry; and Elizabeth Naik, global health and public service research lead.

    Generating innovative organizational configurations and algorithms for dealing with the problem of post-pandemic employment

    Thomas Malone is the Patrick J. McGovern (1959) Professor of Management at the MIT Sloan School of Management and the founding director of the MIT Center for Collective Intelligence. His research focuses on how new organizations can be designed to take advantage of the possibilities provided by information technology. Malone will be joined in this project by John Horton, the Richard S. Leghorn (1939) Career Development Professor at the MIT Sloan School of Management, whose research focuses on the intersection of labor economics, market design, and information systems. Malone and Horton’s project will look to reshape the future of work with the help of lessons learned in the wake of the pandemic.

    The Covid-19 pandemic has been a major disrupter of work and employment, and it is not at all obvious how governments, businesses, and other organizations should manage the transition to a desirable state of employment as the pandemic recedes. Using natural language processing algorithms such as GPT-4, this project will look to identify new ways that companies can use AI to better match applicants to necessary jobs, create new types of jobs, assess skill training needed, and identify interventions to help include women and other groups whose employment was disproportionately affected by the pandemic.

    In addition to Malone and Horton, the research team will include Rob Laubacher, associate director and research scientist at the MIT Center for Collective Intelligence, and Kathleen Kennedy, executive director at the MIT Center for Collective Intelligence and senior director at MIT Horizon. The team will also include Nitu Nivedita, managing director of artificial intelligence at Accenture, and Thomas Hancock, data science senior manager at Accenture. More

  • in

    M’Care and MIT students join forces to improve child health in Nigeria

    Through a collaboration between M’Care, a 2021 Health Security and Pandemics Solver team, and students from MIT, the landscape of child health care in Nigeria could undergo a transformative change, wherein the power of data is harnessed to improve child health outcomes in economically disadvantaged communities. 

    M’Care is a mobile application of Promane and Promade Limited, developed by Opeoluwa Ashimi, which gives community health workers in Nigeria real-time diagnostic and treatment support. The application also creates a dashboard that is available to government health officials to help identify disease trends and deploy timely interventions. As part of its work, M’Care is working to mitigate malnutrition by providing micronutrient powder, vitamin A, and zinc to children below the age of 5. To help deepen its impact, Ashimi decided to work with students in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) course 6.S897 (Machine Learning for Healthcare) — instructed by professors Peter Szolovits and Manolis Kellis — to leverage data in order to improve nutrient delivery to children across Nigeria. The collaboration also enabled students to see real-world applications for data analysis in the health care space.

    A meeting of minds: M’Care, MIT, and national health authorities

    “Our primary goal for collaborating with the ML for Health team was to spot the missing link in the continuum of care. With over 1 million cumulative consultations that qualify for a continuum of care evaluation, it was important to spot why patients could be lost to followup, prevent this, and ensure completion of care to successfully address the health needs of our patients,” says Ashimi, founder and CEO of M’Care.

    In May 2023, Ashimi attended a meeting that brought together key national stakeholders, including the representatives of the National Ministry of Health in Nigeria. This gathering served as a platform to discuss the profound impact of M’Care’s and ML for Health team’s collaboration — bolstered by data analysis provided on dosage regimens and a child’s age to enhance continuum of care with its attendant impact on children’s health, particularly in relation to brain development with regards to the use of essential micronutrients. The data analyzed by the students using ML methods that were shared during the meeting provided strong supporting evidence to individualize dosage regimens for children based on their age in months for the ANRIN project — a national nutrition project supported by the World Bank — as well as policy decisions to extend months of coverage for children, redefining health care practices in Nigeria.

    MIT students drive change by harnessing the power of data

    At the heart of this collaboration lies the contribution of MIT students. Armed with their dedication and skill in data analysis and machine learning, they played a pivotal role in helping M’Care analyze their data and prepare for their meeting with the Ministry of Health. Their most significant findings included ways to identify patients at risk of not completing their full course of micronutrient powder and/or vitamin A, and identifying gaps in M’Care’s data, such as postdated delivery dates and community demographics. These findings are already helping M’Care better plan its resources and adjust the scope of its program to ensure more children complete the intervention.

    Darcy Kim, an undergraduate at Wellesley College studying math and computer science, who is cross-registered for the MIT machine learning course, expresses enthusiasm about the practical applications found within the project: “To me, data and math is storytelling, and the story is why I love studying it. … I learned that data exploration involves asking questions about how the data is collected, and that surprising patterns that arise often have a qualitative explanation. Impactful research requires radical collaboration with the people the research intends to help. Otherwise, these qualitative explanations get lost in the numbers.”

    Joyce Luo, a first-year operations research PhD student at the Operations Research Center at MIT, shares similar thoughts about the project: “I learned the importance of understanding the context behind data to figure out what kind of analysis might be most impactful. This involves being in frequent contact with the company or organization who provides the data to learn as much as you can about how the data was collected and the people the analysis could help. Stepping back and looking at the bigger picture, rather than just focusing on accuracy or metrics, is extremely important.”

    Insights to implementation: A new era for micronutrient dosing

    As a direct result of M’Care’s collaboration with MIT, policymakers revamped the dosing scheme for essential micronutrient administration for children in Nigeria to prevent malnutrition. M’Care and MIT’s data analysis unearthed critical insights into the limited frequency of medical visits caused by late-age enrollment. 

    “One big takeaway for me was that the data analysis portion of the project — doing a deep dive into the data; understanding, analyzing, visualizing, and summarizing the data — can be just as important as building the machine learning models. M’Care shared our data analysis with the National Ministry of Health, and the insights from it drove them to change their dosing scheme and schedule for delivering micronutrient powder to young children. This really showed us the value of understanding and knowing your data before modeling,” shares Angela Lin, a second-year PhD student at the Operations Research Center.

    Armed with this knowledge, policymakers are eager to develop an optimized dosing scheme that caters to the unique needs of children in disadvantaged communities, ensuring maximum impact on their brain development and overall well-being.

    Siddharth Srivastava, M’Care’s corporate technology liaison, shares his gratitude for the MIT student’s input. “Collaborating with enthusiastic and driven students was both empowering and inspiring. Each of them brought unique perspectives and technical skills to the table. Their passion for applying machine learning to health care was evident in their unwavering dedication and proactive approach to problem-solving.”

    Forging a path to impact

    The collaboration between M’Care and MIT exemplifies the remarkable achievements that arise when academia, innovative problem-solvers, and policy authorities unite. By merging academic rigor with real-world expertise, this partnership has the potential to revolutionize child health care not only in Nigeria but also in similar contexts worldwide.

    “I believe applying innovative methods of machine learning, data gathering, instrumentation, and planning to real problems in the developing world can be highly effective for those countries and highly motivating for our students. I was happy to have such a project in our class portfolio this year and look forward to future opportunities,” says Peter Szolovits, professor of computer science and engineering at MIT.

    By harnessing the power of data, innovation, and collective expertise, this collaboration between M’Care and MIT has the potential to improve equitable child health care in Nigeria. “It has been so fulfilling to see how our team’s work has been able to create even the smallest positive impact in such a short period of time, and it has been amazing to work with a company like Promane and Promade Limited that is so knowledgeable and caring for the communities that they serve,” shares Elizabeth Whittier, a second-year PhD electrical engineering student at MIT. More

  • in

    Artificial intelligence for augmentation and productivity

    The MIT Stephen A. Schwarzman College of Computing has awarded seed grants to seven projects that are exploring how artificial intelligence and human-computer interaction can be leveraged to enhance modern work spaces to achieve better management and higher productivity.

    Funded by Andrew W. Houston ’05 and Dropbox Inc., the projects are intended to be interdisciplinary and bring together researchers from computing, social sciences, and management.

    The seed grants can enable the project teams to conduct research that leads to bigger endeavors in this rapidly evolving area, as well as build community around questions related to AI-augmented management.

    The seven selected projects and research leads include:

    “LLMex: Implementing Vannevar Bush’s Vision of the Memex Using Large Language Models,” led by Patti Maes of the Media Lab and David Karger of the Department of Electrical Engineering and Computer Science (EECS) and the Computer Science and Artificial Intelligence Laboratory (CSAIL). Inspired by Vannevar Bush’s Memex, this project proposes to design, implement, and test the concept of memory prosthetics using large language models (LLMs). The AI-based system will intelligently help an individual keep track of vast amounts of information, accelerate productivity, and reduce errors by automatically recording their work actions and meetings, supporting retrieval based on metadata and vague descriptions, and suggesting relevant, personalized information proactively based on the user’s current focus and context.

    “Using AI Agents to Simulate Social Scenarios,” led by John Horton of the MIT Sloan School of Management and Jacob Andreas of EECS and CSAIL. This project imagines the ability to easily simulate policies, organizational arrangements, and communication tools with AI agents before implementation. Tapping into the capabilities of modern LLMs to serve as a computational model of humans makes this vision of social simulation more realistic, and potentially more predictive.

    “Human Expertise in the Age of AI: Can We Have Our Cake and Eat it Too?” led by Manish Raghavan of MIT Sloan and EECS, and Devavrat Shah of EECS and the Laboratory for Information and Decision Systems. Progress in machine learning, AI, and in algorithmic decision aids has raised the prospect that algorithms may complement human decision-making in a wide variety of settings. Rather than replacing human professionals, this project sees a future where AI and algorithmic decision aids play a role that is complementary to human expertise.

    “Implementing Generative AI in U.S. Hospitals,” led by Julie Shah of the Department of Aeronautics and Astronautics and CSAIL, Retsef Levi of MIT Sloan and the Operations Research Center, Kate Kellog of MIT Sloan, and Ben Armstrong of the Industrial Performance Center. In recent years, studies have linked a rise in burnout from doctors and nurses in the United States with increased administrative burdens associated with electronic health records and other technologies. This project aims to develop a holistic framework to study how generative AI technologies can both increase productivity for organizations and improve job quality for workers in health care settings.

    “Generative AI Augmented Software Tools to Democratize Programming,” led by Harold Abelson of EECS and CSAIL, Cynthia Breazeal of the Media Lab, and Eric Klopfer of the Comparative Media Studies/Writing. Progress in generative AI over the past year is fomenting an upheaval in assumptions about future careers in software and deprecating the role of coding. This project will stimulate a similar transformation in computing education for those who have no prior technical training by creating a software tool that could eliminate much of the need for learners to deal with code when creating applications.

    “Acquiring Expertise and Societal Productivity in a World of Artificial Intelligence,” led by David Atkin and Martin Beraja of the Department of Economics, and Danielle Li of MIT Sloan. Generative AI is thought to augment the capabilities of workers performing cognitive tasks. This project seeks to better understand how the arrival of AI technologies may impact skill acquisition and productivity, and to explore complementary policy interventions that will allow society to maximize the gains from such technologies.

    “AI Augmented Onboarding and Support,” led by Tim Kraska of EECS and CSAIL, and Christoph Paus of the Department of Physics. While LLMs have made enormous leaps forward in recent years and are poised to fundamentally change the way students and professionals learn about new tools and systems, there is often a steep learning curve which people have to climb in order to make full use of the resource. To help mitigate the issue, this project proposes the development of new LLM-powered onboarding and support systems that will positively impact the way support teams operate and improve the user experience. More

  • in

    MIT at the 2023 Venice Biennale

    The Venice Architecture Biennale, the world’s largest and most visited exhibition focusing on architecture, is once again featuring work by many MIT faculty, students, and alumni. On view through Nov. 26, the 2023 biennale, curated by Ghanaian-Scottish architect, academic, and novelist Lesley Lokko, is showcasing projects responding to the theme of “The Laboratory of Change.”

    Architecture and Planning and curator of the previous Venice Biennale. “Our students, faculty, and alumni have responded to the speculative theme with innovative projects at a range of scales and in varied media.”

    Below are descriptions of MIT-related projects and activities.

    MIT faculty participants

    Xavi Laida Aguirre, assistant professor of architecture

    Project: Everlasting Plastics

    Project description: SPACES, a nonprofit alternative art organization based in Cleveland, Ohio, and the U.S. Department of State’s Bureau of Educational and Cultural Affairs are behind the U.S. Pavilion’s exhibition at this year’s biennale. The theme, Everlasting Plastics, provides a platform for artists and designers to engage audiences in reframing the overabundance of plastic detritus in our waterways, landfills, and streets as a rich resource. Aguirre’s installation covers two rooms and holds a series of partial scenographies examining indoor proofing materials such as coatings, rubbers, gaskets, bent aluminum, silicone, foam, cement board, and beveled edges.

    Yolande Daniels, associate professor of architecture

    Project: The BLACK City Astrolabe: A Constellation of African Diasporic Women

    Project description: From the multiple displacements of race and gender, enter “The BLACK City Astrolabe,” a space-time field comprised of a 3D map and a 24-hour cycle of narratives that reorder the forces of subjugation, devaluation, and displacement through the spaces and events of African diasporic women. The diaspora map traces the flows of descendants of Africa (whether voluntary or forced) atop the visible tension between the mathematical regularity of meridians of longitude and the biases of international date lines.

    In this moment we are running out of time. The meridians and timeline decades are indexed to an infinite conical projection metered in decades. It structures both the diaspora map and timeline and serves as a threshold to project future structures and events. “The BLACK City Astrolabe” is a vehicle to proactively contemplate things that have happened, that are happening, and that will happen. Yesterday, a “Black” woman went to the future, and here she is.

    Mark Jarzombek, professor of architecture

    Project: Kishkindha NY

    Project description: “Kishkindha NY (Office of (Un)Certainty Research: Mark Jarzombek and Vikramaditya Parakash)” is inspired by an imagined forest-city as described in the ancient Indian text the Ramayana. It comes into being not through the limitations of human agency, but through a multi-species creature that destroys and rebuilds. It is exhibited as a video (Space, Time, Existence) and as a special dance performance.

    Ana Miljački, professor of architecture

    Team: Ana Miljački, professor of architecture and director of Critical Broadcasting Lab, MIT; Ous Abou Ras, MArch candidate; Julian Geltman, MArch; Recording and Design, faculty of Dramatic Arts, Belgrade; Calvin Zhong, MArch candidate. Sound design and production: Pavle Dinulović, assistant professor, Department of Sound Recording and Design, University of Arts in Belgrade.

    Collaborators: Melika Konjičanin, researcher, faculty of architecture, Sarajevo; Ana Martina Bakić, assistant professor, head of department of drawing and visual design, faculty of architecture, Zagreb; Jelica Jovanović, Grupa Arhitekata, Belgrade; Andrew Lawler, Belgrade; Sandro Đukić, CCN Images, Zagreb; Other Tomorrows, Boston.

    Project: The Pilgrimage/Pionirsko hodočašće

    Project description:  The artifacts that constitute Yugoslavia’s socialist architectural heritage, and especially those instrumental in the ideological wiring of several postwar generations for anti-fascism and inclusive living, have been subject to many forms of local and global political investment in forgetting their meaning, as well as to vandalism. The “Pilgrimage” synthesizes “memories” from Yugoslavian childhood visits to myriad postwar anti-fascist memorial monuments and offers them in a shifting and spatial multi-channel video presentation accompanied by a nonlinear documentary soundscape, presenting thus anti-fascism and unity as political and activist positions available (and necessary) today, for the sake of the future. Supported by: MIT Center for Art, Science, and Technology (CAST) Mellon Faculty Grant.

    Adèle Naudé Santos, professor of architecture, planning, and urban design; and Mohamad Nahleh, lecturer in architecture and urbanism; in collaboration with the Beirut Urban Lab at the American University of Beirut

    MIT research team: Ghida El Bsat, Joude Mabsout, Sarin Gacia Vosgerichian, Lasse Rau

    Project: Housing as Infrastructure

    Project description: On Aug. 4, 2020, an estimated 2,750 tons of ammonium nitrate stored at the Port of Beirut exploded, resulting in the deaths of more than 200 people and the devastation of port-adjacent neighborhoods. With over 200,000 housing units in disrepair, exploitative real estate ventures, and the lack of equitable housing policies, we viewed the port blast as a potential escalation of the mechanisms that have produced the ongoing affordable housing crisis across the city. 

    The Dar Group requested proposals to rethink the affected part of the city, through MIT’s Norman B. Leventhal Center for Advanced Urbanism. To best ground our design proposal, we invited the Beirut Urban Lab at the American University of Beirut to join us. We chose to work on the heavily impacted low-rise and high-density neighborhood of Mar Mikhael. Our resultant urban strategy anchors housing within a corridor of shared open spaces. Housing is inscribed within this network and sustained through an adaptive system defined by energy-efficiency and climate responsiveness. Cross-ventilation sweeps through the project on all sides, with solar panel lined roofs integrated to always provide adequate levels of electricity for habitation. These strategies are coupled with an array of modular units designed to echo the neighborhood’s intimate quality — all accessible through shared ramps and staircases. Within this context, housing itself becomes the infrastructure, guiding circulation, managing slopes, integrating green spaces, and providing solar energy across the community. 

    Rafi Segal, associate professor of architecture and urbanism, director of the Future Urban Collectives Lab, director of the SMArchS program; and Susannah Drake.

    Contributors: Olivia Serra, William Minghao Du

    Project:  From Redlining to Blue Zoning: Equity and Environmental Risk, Miami 2100 (2021)

    Project description: As part of Susannah Drake and Rafi Segal’s ongoing work on “Coastal Urbanism,” this project examines the legacy of racial segregation in South Florida and the existential threat that climate change poses to communities in Miami. Through models of coops and community-owned urban blocks, this project seeks to empower formerly disenfranchised communities with new methods of equity capture, allowing residents whose parents and grandparents suffered from racial discrimination to build wealth and benefit from increased real estate value and development.

    Nomeda Urbonas, Art, Culture, and Technology research affiliate; and Gediminas Urbonas, ACT associate professor

    Project: The Swamp Observatory

    Project description: “The Swamp Observatory” augmented reality app is a result of two-year collaboration with a school in Gotland Island in the Baltic Sea, arguably the most polluted sea in the world. Developed as a conceptual playground and a digital tool to augment reality with imaginaries for new climate commons, the app offers new perspective to the planning process, suggesting eco-monsters as emergent ecology for the planned stormwater ponds in the new sustainable city. 

    Sarah Williams, associate professor, technology and urban planning

    Team members: listed here.

    Project: DISTANCE UNKNOWN: RISKS AND OPPORTUNITIES OF MIGRATION IN THE AMERICAS 

    Project description: On view are visualizations made by the MIT Civic Data Design Lab and the United Nations World Food Program that helped to shape U.S. migration policy. The exhibition is built from a unique dataset collected from 4,998 households surveyed in El Salvador, Guatemala, and Honduras. A tapestry woven out of money and constructed by the hands of Central America migrants illustrates that migrants spent $2.2 billion to migrate from Central America in 2021.

    MIT student curators

    Carmelo Ignaccolo, PhD candidate, Department of Urban Studies and Planning (DUSP)

    Curator: Carmelo Ignaccolo; advisor: Sarah Williams; researchers: Emily Levenson (DUSP), Melody Phu (MIT), Leo Saenger (Harvard University), Yuke Zheng (Harvard); digital animation designer: Ting Zhang

    Exhibition Design Assistant: Dila Ozberkman (architecture and DUSP)

    Project: The Consumed City 

    Project description: “The Consumed City” narrates a spatial investigation of “overtourism” in the historic city of Venice by harnessing granular data on lodging, dining, and shopping. The exhibition presents two large maps and digital animations to showcase the complexity of urban tourism and to reveal the spatial interplay between urban tourism and urban features, such as landmarks, bridges, and street patterns. By leveraging by-product geospatial datasets and advancing visualization techniques, “The Consumed City” acts as a prototype to call for novel policymaking tools in cities “consumed” by “overtourism.”

    MIT-affiliated auxiliary events

    Rania Ghosn, associate professor of architecture and urbanism, El Hadi Jazairy, Anhong Li, and Emma Jurczynski, with initial contributions from Marco Nieto and Zhifei Xu. Graphic design: Office of Luke Bulman.

    Project: Climate Inheritance

    Project description: “Climate Inheritance” is a speculative design research publication that reckons with the complexity of “heritage” and “world” in the Anthropocene Epoch. The impacts of climate change on heritage sites — from Venice flooding to extinction in the Galapagos Islands — have garnered empathetic attention in a media landscape that has otherwise mostly failed to communicate the urgency of the climate crisis. In a strategic subversion of the media aura of heritage, the project casts World Heritage sites as narrative figures to visualize pervasive climate risks all while situating the present emergency within the wreckage of other ends of worlds, replete with the salvages of extractivism, racism, and settler colonialism.   

    Rebuilding Beirut: Using Data to Co-Design a New Future

    SA+P faculty, researchers, and students are participating in the sixth biennial architecture exhibition “Time Space Existence,” presented by the European Cultural Center. The exhibit showcases three collaborative research and design proposals that support the rebuilding efforts in Beirut following the catastrophic explosion at the Port of Beirut in August 2020.

    “Living Heritage Atlas” captures the significance and vulnerability of Beirut’s cultural heritage. 

    “City Scanner” tracks the environmental impacts of the explosion and the subsequent rebuilding efforts. “Community Streets” supports the redesign of streets and public space. 

    The work is supported by the Dar Group Urban Seed Grant Fund at MIT’s Norman B. Leventhal Center for Advanced Urbanism.

    Team members:Living Heritage AtlasCivic Data Design Lab and Future Heritage Lab at MITAssociate Professor Sarah Williams, co-principal investigator (PI)Associate Professor Azra Aksamija, co-PICity Scanner Senseable City Lab at MIT with the American University of Beirut and FAE Technology Professor Carlo Ratti, co-PIFábio Duarte, co-PISimone Mora, research and project leadCommunity Streets City Form Lab at MIT with the American University of BeirutAssociate Professor Andres Sevtsuk, co-PIProfessor Maya Abou-Zeid, co-PISchool of Architecture and Planning alumni participants   Rodrigo Escandón Cesarman SMArchS Design ’20 (co-curator, Mexican Pavilion)Felecia Davis PhD ’17 Design and Computation, SOFTLAB@PSU (Penn State University)Jaekyung Jung SM ’10, (with the team for the Korean pavilion)Vijay Rajkumar MArch ’22 (with the team for the Bahrain Pavilion)

    Other MIT alumni participants

    Basis with GKZ

    Team: Emily Mackevicius PhD ’18, brain and cognitive sciences, with Zenna Tavares, Kibwe Tavares, Gaika Tavares, and Eli Bingham

    Project description: The nonprofit research group works on rethinking AI as a “reasoning machine.” Their two goals are to develop advanced technological models and to make society able to tackle “intractable problems.” Their approach to technology is founded less on pattern elaboration than on the Bayes’ hypothesis, the ability of machines to work on abductive reasoning, which is the same used by the human mind. Two city-making projects model cities after interaction between experts and stakeholders, and representation is at the heart of the dialogue. More

  • in

    How machine learning models can amplify inequities in medical diagnosis and treatment

    Prior to receiving a PhD in computer science from MIT in 2017, Marzyeh Ghassemi had already begun to wonder whether the use of AI techniques might enhance the biases that already existed in health care. She was one of the early researchers to take up this issue, and she’s been exploring it ever since. In a new paper, Ghassemi, now an assistant professor in MIT’s Department of Electrical Science and Engineering (EECS), and three collaborators based at the Computer Science and Artificial Intelligence Laboratory, have probed the roots of the disparities that can arise in machine learning, often causing models that perform well overall to falter when it comes to subgroups for which relatively few data have been collected and utilized in the training process. The paper — written by two MIT PhD students, Yuzhe Yang and Haoran Zhang, EECS computer scientist Dina Katabi (the Thuan and Nicole Pham Professor), and Ghassemi — was presented last month at the 40th International Conference on Machine Learning in Honolulu, Hawaii.

    In their analysis, the researchers focused on “subpopulation shifts” — differences in the way machine learning models perform for one subgroup as compared to another. “We want the models to be fair and work equally well for all groups, but instead we consistently observe the presence of shifts among different groups that can lead to inferior medical diagnosis and treatment,” says Yang, who along with Zhang are the two lead authors on the paper. The main point of their inquiry is to determine the kinds of subpopulation shifts that can occur and to uncover the mechanisms behind them so that, ultimately, more equitable models can be developed.

    The new paper “significantly advances our understanding” of the subpopulation shift phenomenon, claims Stanford University computer scientist Sanmi Koyejo. “This research contributes valuable insights for future advancements in machine learning models’ performance on underrepresented subgroups.”

    Camels and cattle

    The MIT group has identified four principal types of shifts — spurious correlations, attribute imbalance, class imbalance, and attribute generalization — which, according to Yang, “have never been put together into a coherent and unified framework. We’ve come up with a single equation that shows you where biases can come from.”

    Biases can, in fact, stem from what the researchers call the class, or from the attribute, or both. To pick a simple example, suppose the task assigned to the machine learning model is to sort images of objects — animals in this case — into two classes: cows and camels. Attributes are descriptors that don’t specifically relate to the class itself. It might turn out, for instance, that all the images used in the analysis show cows standing on grass and camels on sand — grass and sand serving as the attributes here. Given the data available to it, the machine could reach an erroneous conclusion — namely that cows can only be found on grass, not on sand, with the opposite being true for camels. Such a finding would be incorrect, however, giving rise to a spurious correlation, which, Yang explains, is a “special case” among subpopulation shifts — “one in which you have a bias in both the class and the attribute.”

    In a medical setting, one could rely on machine learning models to determine whether a person has pneumonia or not based on an examination of X-ray images. There would be two classes in this situation, one consisting of people who have the lung ailment, another for those who are infection-free. A relatively straightforward case would involve just two attributes: the people getting X-rayed are either female or male. If, in this particular dataset, there were 100 males diagnosed with pneumonia for every one female diagnosed with pneumonia, that could lead to an attribute imbalance, and the model would likely do a better job of correctly detecting pneumonia for a man than for a woman. Similarly, having 1,000 times more healthy (pneumonia-free) subjects than sick ones would lead to a class imbalance, with the model biased toward healthy cases. Attribute generalization is the last shift highlighted in the new study. If your sample contained 100 male patients with pneumonia and zero female subjects with the same illness, you still would like the model to be able to generalize and make predictions about female subjects even though there are no samples in the training data for females with pneumonia.

    The team then took 20 advanced algorithms, designed to carry out classification tasks, and tested them on a dozen datasets to see how they performed across different population groups. They reached some unexpected conclusions: By improving the “classifier,” which is the last layer of the neural network, they were able to reduce the occurrence of spurious correlations and class imbalance, but the other shifts were unaffected. Improvements to the “encoder,” one of the uppermost layers in the neural network, could reduce the problem of attribute imbalance. “However, no matter what we did to the encoder or classifier, we did not see any improvements in terms of attribute generalization,” Yang says, “and we don’t yet know how to address that.”

    Precisely accurate

    There is also the question of assessing how well your model actually works in terms of evenhandedness among different population groups. The metric normally used, called worst-group accuracy or WGA, is based on the assumption that if you can improve the accuracy — of, say, medical diagnosis — for the group that has the worst model performance, you would have improved the model as a whole. “The WGA is considered the gold standard in subpopulation evaluation,” the authors contend, but they made a surprising discovery: boosting worst-group accuracy results in a decrease in what they call “worst-case precision.” In medical decision-making of all sorts, one needs both accuracy — which speaks to the validity of the findings — and precision, which relates to the reliability of the methodology. “Precision and accuracy are both very important metrics in classification tasks, and that is especially true in medical diagnostics,” Yang explains. “You should never trade precision for accuracy. You always need to balance the two.”

    The MIT scientists are putting their theories into practice. In a study they’re conducting with a medical center, they’re looking at public datasets for tens of thousands of patients and hundreds of thousands of chest X-rays, trying to see whether it’s possible for machine learning models to work in an unbiased manner for all populations. That’s still far from the case, even though more awareness has been drawn to this problem, Yang says. “We are finding many disparities across different ages, gender, ethnicity, and intersectional groups.”

    He and his colleagues agree on the eventual goal, which is to achieve fairness in health care among all populations. But before we can reach that point, they maintain, we still need a better understanding of the sources of unfairness and how they permeate our current system. Reforming the system as a whole will not be easy, they acknowledge. In fact, the title of the paper they introduced at the Honolulu conference, “Change is Hard,” gives some indications as to the challenges that they and like-minded researchers face. More

  • in

    Making sense of cell fate

    Despite the proliferation of novel therapies such as immunotherapy or targeted therapies, radiation and chemotherapy remain the frontline treatment for cancer patients. About half of all patients still receive radiation and 60-80 percent receive chemotherapy.

    Both radiation and chemotherapy work by damaging DNA, taking advantage of a vulnerability specific to cancer cells. Healthy cells are more likely to survive radiation and chemotherapy since their mechanisms for identifying and repairing DNA damage are intact. In cancer cells, these repair mechanisms are compromised by mutations. When cancer cells cannot adequately respond to the DNA damage caused by radiation and chemotherapy, ideally, they undergo apoptosis or die by other means.

    However, there is another fate for cells after DNA damage: senescence — a state where cells survive, but stop dividing. Senescent cells’ DNA has not been damaged enough to induce apoptosis but is too damaged to support cell division. While senescent cancer cells themselves are unable to proliferate and spread, they are bad actors in the fight against cancer because they seem to enable other cancer cells to develop more aggressively. Although a cancer cell’s fate is not apparent until a few days after treatment, the decision to survive, die, or enter senescence is made much earlier. But, precisely when and how that decision is made has not been well understood.

    In an open-access study of ovarian and osteosarcoma cancer cells appearing July 19 in Cell Systems, MIT researchers show that cell signaling proteins commonly associated with cell proliferation and apoptosis instead commit cancer cells to senescence within 12 hours of treatment with low doses of certain kinds of chemotherapy.

    “When it comes to treating cancer, this study underscores that it’s important not to think too linearly about cell signaling,” says Michael Yaffe, who is a David H. Koch Professor of Science at MIT, the director of the MIT Center for Precision Cancer Medicine, a member of MIT’s Koch Institute for Integrative Cancer Research, and the senior author of the study. “If you assume that a particular treatment will always affect cancer cell signaling in the same way — you may be setting yourself up for many surprises, and treating cancers with the wrong combination of drugs.”

    Using a combination of experiments with cancer cells and computational modeling, the team investigated the cell signaling mechanisms that prompt cancer cells to enter senescence after treatment with a commonly used anti-cancer agent. Their efforts singled out two protein kinases and a component of the AP-1 transcription factor complex as highly associated with the induction of senescence after DNA damage, despite the well-established roles for all of these molecules in promoting cell proliferation in cancer.

    The researchers treated cancer cells with low and high doses of doxorubicin, a chemotherapy that interferes with the function with topoisomerase II, an enzyme that breaks and then repairs DNA strands during replication to fix tangles and other topological problems.

    By measuring the effects of DNA damage on single cells at several time points ranging from six hours to four days after the initial exposure, the team created two datasets. In one dataset, the researchers tracked cell fate over time. For the second set, researchers measured relative cell signaling activity levels across a variety of proteins associated with responses to DNA damage or cellular stress, determination of cell fate, and progress through cell growth and division.

    The two datasets were used to build a computational model that identifies correlations between time, dosage, signal, and cell fate. The model identified the activities of the MAP kinases Erk and JNK, and the transcription factor c-Jun as key components of the AP-1 protein likewise understood to involved in the induction of senescence. The researchers then validated these computational findings by showing that inhibition of JNK and Erk after DNA damage successfully prevented cells from entering senescence.

    The researchers leveraged JNK and Erk inhibition to pinpoint exactly when cells made the decision to enter senescence. Surprisingly, they found that the decision to enter senescence was made within 12 hours of DNA damage, even though it took days to actually see the senescent cells accumulate. The team also found that with the passage of more time, these MAP kinases took on a different function: promoting the secretion of proinflammatory proteins called cytokines that are responsible for making other cancer cells proliferate and develop resistance to chemotherapy.

    “Proteins like cytokines encourage ‘bad behavior’ in neighboring tumor cells that lead to more aggressive cancer progression,” says Tatiana Netterfield, a graduate student in the Yaffe lab and the lead author of the study. “Because of this, it is thought that senescent cells that stay near the tumor for long periods of time are detrimental to treating cancer.”

    This study’s findings apply to cancer cells treated with a commonly used type of chemotherapy that stalls DNA replication after repair. But more broadly, the study emphasizes that “when treating cancer, it’s extremely important to understand the molecular characteristics of cancer cells and the contextual factors such as time and dosing that determine cell fate,” explains Netterfield.

    The study, however, has more immediate implications for treatments that are already in use. One class of Erk inhibitors, MEK inhibitors, are used in the clinic with the expectation that they will curb cancer growth.

    “We must be cautious about administering MEK inhibitors together with chemotherapies,” says Yaffe. “The combination may have the unintended effect of driving cells into proliferation, rather than senescence.”

    In future work, the team will perform studies to understand how and why individual cells choose to proliferate instead of enter senescence. Additionally, the team is employing next-generation sequencing to understand which genes c-Jun is regulating in order to push cells toward senescence.

    This study was funded, in part, by the Charles and Marjorie Holloway Foundation and the MIT Center for Precision Cancer Medicine. More

  • in

    A simpler method for learning to control a robot

    Researchers from MIT and Stanford University have devised a new machine-learning approach that could be used to control a robot, such as a drone or autonomous vehicle, more effectively and efficiently in dynamic environments where conditions can change rapidly.

    This technique could help an autonomous vehicle learn to compensate for slippery road conditions to avoid going into a skid, allow a robotic free-flyer to tow different objects in space, or enable a drone to closely follow a downhill skier despite being buffeted by strong winds.

    The researchers’ approach incorporates certain structure from control theory into the process for learning a model in such a way that leads to an effective method of controlling complex dynamics, such as those caused by impacts of wind on the trajectory of a flying vehicle. One way to think about this structure is as a hint that can help guide how to control a system.

    “The focus of our work is to learn intrinsic structure in the dynamics of the system that can be leveraged to design more effective, stabilizing controllers,” says Navid Azizan, the Esther and Harold E. Edgerton Assistant Professor in the MIT Department of Mechanical Engineering and the Institute for Data, Systems, and Society (IDSS), and a member of the Laboratory for Information and Decision Systems (LIDS). “By jointly learning the system’s dynamics and these unique control-oriented structures from data, we’re able to naturally create controllers that function much more effectively in the real world.”

    Using this structure in a learned model, the researchers’ technique immediately extracts an effective controller from the model, as opposed to other machine-learning methods that require a controller to be derived or learned separately with additional steps. With this structure, their approach is also able to learn an effective controller using fewer data than other approaches. This could help their learning-based control system achieve better performance faster in rapidly changing environments.

    “This work tries to strike a balance between identifying structure in your system and just learning a model from data,” says lead author Spencer M. Richards, a graduate student at Stanford University. “Our approach is inspired by how roboticists use physics to derive simpler models for robots. Physical analysis of these models often yields a useful structure for the purposes of control — one that you might miss if you just tried to naively fit a model to data. Instead, we try to identify similarly useful structure from data that indicates how to implement your control logic.”

    Additional authors of the paper are Jean-Jacques Slotine, professor of mechanical engineering and of brain and cognitive sciences at MIT, and Marco Pavone, associate professor of aeronautics and astronautics at Stanford. The research will be presented at the International Conference on Machine Learning (ICML).

    Learning a controller

    Determining the best way to control a robot to accomplish a given task can be a difficult problem, even when researchers know how to model everything about the system.

    A controller is the logic that enables a drone to follow a desired trajectory, for example. This controller would tell the drone how to adjust its rotor forces to compensate for the effect of winds that can knock it off a stable path to reach its goal.

    This drone is a dynamical system — a physical system that evolves over time. In this case, its position and velocity change as it flies through the environment. If such a system is simple enough, engineers can derive a controller by hand. 

    Modeling a system by hand intrinsically captures a certain structure based on the physics of the system. For instance, if a robot were modeled manually using differential equations, these would capture the relationship between velocity, acceleration, and force. Acceleration is the rate of change in velocity over time, which is determined by the mass of and forces applied to the robot.

    But often the system is too complex to be exactly modeled by hand. Aerodynamic effects, like the way swirling wind pushes a flying vehicle, are notoriously difficult to derive manually, Richards explains. Researchers would instead take measurements of the drone’s position, velocity, and rotor speeds over time, and use machine learning to fit a model of this dynamical system to the data. But these approaches typically don’t learn a control-based structure. This structure is useful in determining how to best set the rotor speeds to direct the motion of the drone over time.

    Once they have modeled the dynamical system, many existing approaches also use data to learn a separate controller for the system.

    “Other approaches that try to learn dynamics and a controller from data as separate entities are a bit detached philosophically from the way we normally do it for simpler systems. Our approach is more reminiscent of deriving models by hand from physics and linking that to control,” Richards says.

    Identifying structure

    The team from MIT and Stanford developed a technique that uses machine learning to learn the dynamics model, but in such a way that the model has some prescribed structure that is useful for controlling the system.

    With this structure, they can extract a controller directly from the dynamics model, rather than using data to learn an entirely separate model for the controller.

    “We found that beyond learning the dynamics, it’s also essential to learn the control-oriented structure that supports effective controller design. Our approach of learning state-dependent coefficient factorizations of the dynamics has outperformed the baselines in terms of data efficiency and tracking capability, proving to be successful in efficiently and effectively controlling the system’s trajectory,” Azizan says. 

    When they tested this approach, their controller closely followed desired trajectories, outpacing all the baseline methods. The controller extracted from their learned model nearly matched the performance of a ground-truth controller, which is built using the exact dynamics of the system.

    “By making simpler assumptions, we got something that actually worked better than other complicated baseline approaches,” Richards adds.

    The researchers also found that their method was data-efficient, which means it achieved high performance even with few data. For instance, it could effectively model a highly dynamic rotor-driven vehicle using only 100 data points. Methods that used multiple learned components saw their performance drop much faster with smaller datasets.

    This efficiency could make their technique especially useful in situations where a drone or robot needs to learn quickly in rapidly changing conditions.

    Plus, their approach is general and could be applied to many types of dynamical systems, from robotic arms to free-flying spacecraft operating in low-gravity environments.

    In the future, the researchers are interested in developing models that are more physically interpretable, and that would be able to identify very specific information about a dynamical system, Richards says. This could lead to better-performing controllers.

    “Despite its ubiquity and importance, nonlinear feedback control remains an art, making it especially suitable for data-driven and learning-based methods. This paper makes a significant contribution to this area by proposing a method that jointly learns system dynamics, a controller, and control-oriented structure,” says Nikolai Matni, an assistant professor in the Department of Electrical and Systems Engineering at the University of Pennsylvania, who was not involved with this work. “What I found particularly exciting and compelling was the integration of these components into a joint learning algorithm, such that control-oriented structure acts as an inductive bias in the learning process. The result is a data-efficient learning process that outputs dynamic models that enjoy intrinsic structure that enables effective, stable, and robust control. While the technical contributions of the paper are excellent themselves, it is this conceptual contribution that I view as most exciting and significant.”

    This research is supported, in part, by the NASA University Leadership Initiative and the Natural Sciences and Engineering Research Council of Canada. More

  • in

    A new dataset of Arctic images will spur artificial intelligence research

    As the U.S. Coast Guard (USCG) icebreaker Healy takes part in a voyage across the North Pole this summer, it is capturing images of the Arctic to further the study of this rapidly changing region. Lincoln Laboratory researchers installed a camera system aboard the Healy while at port in Seattle before it embarked on a three-month science mission on July 11. The resulting dataset, which will be one of the first of its kind, will be used to develop artificial intelligence tools that can analyze Arctic imagery.

    “This dataset not only can help mariners navigate more safely and operate more efficiently, but also help protect our nation by providing critical maritime domain awareness and an improved understanding of how AI analysis can be brought to bear in this challenging and unique environment,” says Jo Kurucar, a researcher in Lincoln Laboratory’s AI Software Architectures and Algorithms Group, which led this project.

    As the planet warms and sea ice melts, Arctic passages are opening up to more traffic, both to military vessels and ships conducting illegal fishing. These movements may pose national security challenges to the United States. The opening Arctic also leaves questions about how its climate, wildlife, and geography are changing.

    Today, very few imagery datasets of the Arctic exist to study these changes. Overhead images from satellites or aircraft can only provide limited information about the environment. An outward-looking camera attached to a ship can capture more details of the setting and different angles of objects, such as other ships, in the scene. These types of images can then be used to train AI computer-vision tools, which can help the USCG plan naval missions and automate analysis. According to Kurucar, USCG assets in the Arctic are spread thin and can benefit greatly from AI tools, which can act as a force multiplier.

    The Healy is the USCG’s largest and most technologically advanced icebreaker. Given its current mission, it was a fitting candidate to be equipped with a new sensor to gather this dataset. The laboratory research team collaborated with the USCG Research and Development Center to determine the sensor requirements. Together, they developed the Cold Region Imaging and Surveillance Platform (CRISP).

    “Lincoln Laboratory has an excellent relationship with the Coast Guard, especially with the Research and Development Center. Over a decade, we’ve established ties that enabled the deployment of the CRISP system,” says Amna Greaves, the CRISP project lead and an assistant leader in the AI Software Architectures and Algorithms Group. “We have strong ties not only because of the USCG veterans working at the laboratory and in our group, but also because our technology missions are complementary. Today it was deploying infrared sensing in the Arctic; tomorrow it could be operating quadruped robot dogs on a fast-response cutter.”

    The CRISP system comprises a long-wave infrared camera, manufactured by Teledyne FLIR (for forward-looking infrared), that is designed for harsh maritime environments. The camera can stabilize itself during rough seas and image in complete darkness, fog, and glare. It is paired with a GPS-enabled time-synchronized clock and a network video recorder to record both video and still imagery along with GPS-positional data.  

    The camera is mounted at the front of the ship’s fly bridge, and the electronics are housed in a ruggedized rack on the bridge. The system can be operated manually from the bridge or be placed into an autonomous surveillance mode, in which it slowly pans back and forth, recording 15 minutes of video every three hours and a still image once every 15 seconds.

    “The installation of the equipment was a unique and fun experience. As with any good project, our expectations going into the install did not meet reality,” says Michael Emily, the project’s IT systems administrator who traveled to Seattle for the install. Working with the ship’s crew, the laboratory team had to quickly adjust their route for running cables from the camera to the observation station after they discovered that the expected access points weren’t in fact accessible. “We had 100-foot cables made for this project just in case of this type of scenario, which was a good thing because we only had a few inches to spare,” Emily says.

    The CRISP project team plans to publicly release the dataset, anticipated to be about 4 terabytes in size, once the USCG science mission concludes in the fall.

    The goal in releasing the dataset is to enable the wider research community to develop better tools for those operating in the Arctic, especially as this region becomes more navigable. “Collecting and publishing the data allows for faster and greater progress than what we could accomplish on our own,” Kurucar adds. “It also enables the laboratory to engage in more advanced AI applications while others make more incremental advances using the dataset.”

    On top of providing the dataset, the laboratory team plans to provide a baseline object-detection model, from which others can make progress on their own models. More advanced AI applications planned for development are classifiers for specific objects in the scene and the ability to identify and track objects across images.

    Beyond assisting with USCG missions, this project could create an influential dataset for researchers looking to apply AI to data from the Arctic to help combat climate change, says Paul Metzger, who leads the AI Software Architectures and Algorithms Group.

    Metzger adds that the group was honored to be a part of this project and is excited to see the advances that come from applying AI to novel challenges facing the United States: “I’m extremely proud of how our group applies AI to the highest-priority challenges in our nation, from predicting outbreaks of Covid-19 and assisting the U.S. European Command in their support of Ukraine to now employing AI in the Arctic for maritime awareness.”

    Once the dataset is available, it will be free to download on the Lincoln Laboratory dataset website. More