More stories

  • in

    3 Questions: Why cybersecurity is on the agenda for corporate boards of directors

    Organizations of every size and in every industry are vulnerable to cybersecurity risks — a dynamic landscape of threats and vulnerabilities and a corresponding overload of possible mitigating controls. MIT Senior Lecturer Keri Pearlson, who is also the executive director of the research consortium Cybersecurity at MIT Sloan (CAMS) and an instructor for the new MIT Sloan Executive Education course Cybersecurity Governance for the Board of Directors, knows how business can get ahead of this risk. Here, she describes the current threat and explores how boards can mitigate their risk against cybercrime.

    Q: What does the current state of cyberattacks mean for businesses in 2023?

    A: Last year we were discussing how the pandemic heightened fear, uncertainty, doubt and chaos, opening new doors for malicious actors to do their cyber mischief in our organizations and our families. We saw an increase in ransomware and other cyber attacks, and we saw an increase in concern from operating executives and board of directors wondering how to keep the organization secure. Since then, we have seen a continued escalation of cyber incidents, many of which no longer make the headlines unless they are wildly unique, damaging, or different than previous incidents. For every new technology that cybersecurity professionals invent, it’s only a matter of time until malicious actors find a way around it. New leadership approaches are needed for 2023 as we move into the next phase of securing our organizations.

    In great part, this means ensuring deep cybersecurity competencies on our boards of directors. Cyber risk is so significant that a responsible board can no longer ignore it or just delegate it to risk management experts. In fact, an organization’s board of directors holds a uniquely vital role in safeguarding data and systems for the future because of their fiduciary responsibility to shareholders and their responsibility to oversee and mitigate business risk.

    As these cyber threats increase, and as companies bolster their cybersecurity budgets accordingly, the regulatory community is also advancing new requirements of companies. In March of this year, the SEC issued a proposed rule titled Cybersecurity Risk Management, Strategy, Governance, and Incident Disclosure. In it, the SEC describes its intention to require public companies to disclose whether their boards have members with cybersecurity expertise. Specifically, registrants will be required to disclose whether the entire board, a specific board member, or a board committee is responsible for the oversight of cyber risks; the processes by which the board is informed about cyber risks, and the frequency of its discussions on this topic; and whether and how the board or specified board committee considers cyber risks as part of its business strategy, risk management, and financial oversight.

    Q: How can boards help their organizations mitigate cyber risk?

    A: According to the studies I’ve conducted with my CAMS colleagues, most organizations focus on cyber protection rather than cyber resilience, and we believe that is a mistake. A company that invests only in protection is not managing the risk associated with getting up and running again in the event of a cyber incident, and they are not going to be able to respond appropriately to new regulations, either. Resiliency means having a practical plan for recovery and business continuation.

    Certainly, protection is part of the resilience equation, but if the pandemic taught us anything, it taught us that resilience is the ability to weather an attack and recover quickly with minimal impact to our operations. The ultimate goal of a cyber-resilient organization would be zero disruption from a cyber breach — no impact on operations, finances, technologies, supply chain or reputation. Board members should ask, What would it take for this to be the case? And they should ensure that executives and managers have made proper and appropriate preparations to respond and recover.

    Being a knowledgeable board member does not mean becoming a cybersecurity expert, but it does mean understanding basic concepts, risks, frameworks, and approaches. And it means having the ability to assess whether management appropriately comprehends related threats, has an appropriate cyber strategy, and can measure its effectiveness. Board members today require focused training on these critical areas to carry out their mission. Unfortunately, many enterprises fail to leverage their boards of directors in this capacity or prepare board members to actively contribute to strategy, protocols, and emergency action plans.

    Alongside my CAMS colleagues Stuart Madnick and Kevin Powers, I’m teaching a new  MIT Sloan Executive Education course, Cybersecurity Governance for the Board of Directors, designed to help organizations and their boards get up to speed. Participants will explore the board’s role in cybersecurity, as well as breach planning, response, and mitigation. And we will discuss the impact and requirements of the many new regulations coming forward, not just from the SEC, but also White House, Congress, and most states and countries around the world, which are imposing more high-level responsibilities on companies.

    Q: What are some examples of how companies, and specifically boards of directors, have successfully upped their cybersecurity game?

    A: To ensure boardroom skills reflect the patterns of the marketplace, companies such as FedEx, Hasbro, PNC, and UPS have transformed their approach to governing cyber risk, starting with board cyber expertise. In companies like these, building resiliency started with a clear plan — from the boardroom — built on business and economic analysis.

    In one company we looked at, the CEO realized his board was not well versed in the business context or financial exposure risk from a cyber attack, so he hired a third-party consulting firm to conduct a cybersecurity maturity assessment. The company CISO presented the results of the report to the enterprise risk management subcommittee, creating a productive dialogue around the business and financial impact of different investments in cybersecurity.  

    Another organization focused their board on the alignment of their cybersecurity program and operational risk. The CISO, chief risk officer, and board collaborated to understand the exposure of the organization from a risk perspective, resulting in optimizing their cyber insurance policy to mitigate the newly understood risk.

    One important takeaway from these examples is the importance of using the language of risk, resiliency, and reputation to bridge the gaps between technical cybersecurity needs and the oversight responsibilities executed by boards. Boards need to understand the financial exposure resulting from cyber risk, not just the technical components typically found in cyber presentations.

    Cyber risk is not going away. It’s escalating and becoming more sophisticated every day. Getting your board “on board” is key to meeting new guidelines, providing sufficient oversight to cybersecurity plans, and making organizations more resilient. More

  • in

    MIT Policy Hackathon produces new solutions for technology policy challenges

    Almost three years ago, the Covid-19 pandemic changed the world. Many are still looking to uncover a “new normal.”

    “Instead of going back to normal, [there’s a new generation that] wants to build back something different, something better,” says Jorge Sandoval, a second-year graduate student in MIT’s Technology and Policy Program (TPP) at the Institute for Data, Systems and Society (IDSS). “How do we communicate this mindset to others, that the world cannot be the same as before?”

    This was the inspiration behind “A New (Re)generation,” this year’s theme for the IDSS-student-run MIT Policy Hackathon, which Sandoval helped to organize as the event chair. The Policy Hackathon is a weekend-long, interdisciplinary competition that brings together participants from around the globe to explore potential solutions to some of society’s greatest challenges. 

    Unlike other competitions of its kind, Sandoval says MIT’s event emphasizes a humanistic approach. “The idea of our hackathon is to promote applications of technology that are humanistic or human-centered,” he says. “We take the opportunity to examine aspects of technology in the spaces where they tend to interact with society and people, an opportunity most technical competitions don’t offer because their primary focus is on the technology.”

    The competition started with 50 teams spread across four challenge categories. This year’s categories included Internet and Cybersecurity, Environmental Justice, Logistics, and Housing and City Planning. While some people come into the challenge with friends, Sandoval said most teams form organically during an online networking meeting hosted by MIT.

    “We encourage people to pair up with others outside of their country and to form teams of different diverse backgrounds and ages,” Sandoval says. “We try to give people who are often not invited to the decision-making table the opportunity to be a policymaker, bringing in those with backgrounds in not only law, policy, or politics, but also medicine, and people who have careers in engineering or experience working in nonprofits.”

    Once an in-person event, the Policy Hackathon has gone through its own regeneration process these past three years, according to Sandoval. After going entirely online during the pandemic’s height, last year they successfully hosted the first hybrid version of the event, which served as their model again this year.

    “The hybrid version of the event gives us the opportunity to allow people to connect in a way that is lost if it is only online, while also keeping the wide range of accessibility, allowing people to join from anywhere in the world, regardless of nationality or income, to provide their input,” Sandoval says.

    For Swetha Tadisina, an undergraduate computer science major at Lafayette College and participant in the internet and cybersecurity category, the hackathon was a unique opportunity to meet and work with people much more advanced in their careers. “I was surprised how such a diverse team that had never met before was able to work so efficiently and creatively,” Tadisina says.

    Erika Spangler, a public high school teacher from Massachusetts and member of the environmental justice category’s winning team, says that while each member of “Team Slime Mold” came to the table with a different set of skills, they managed to be in sync from the start — even working across the nine-and-a-half-hour time difference the four-person team faced when working with policy advocate Shruti Nandy from Calcutta, India.

    “We divided the project into data, policy, and research and trusted each other’s expertise,” Spangler says, “Despite having separate areas of focus, we made sure to have regular check-ins to problem-solve and cross-pollinate ideas.”

    During the 48-hour period, her team proposed the creation of an algorithm to identify high-quality brownfields that could be cleaned up and used as sites for building renewable energy. Their corresponding policy sought to mandate additional requirements for renewable energy businesses seeking tax credits from the Inflation Reduction Act.

    “Their policy memo had the most in-depth technical assessment, including deep dives in a few key cities to show the impact of their proposed approach for site selection at a very granular level,” says Amanda Levin, director of policy analysis for the Natural Resources Defense Council (NRDC). Levin acted as both a judge and challenge provider for the environmental justice category.

    “They also presented their policy recommendations in the memo in a well-thought-out way, clearly noting the relevant actor,” she adds. This clarity around what can be done, and who would be responsible for those actions, is highly valuable for those in policy.”

    Levin says the NRDC, one of the largest environmental nonprofits in the United States, provided five “challenge questions,” making it clear that teams did not need to address all of them. She notes that this gave teams significant leeway, bringing a wide variety of recommendations to the table. 

    “As a challenge partner, the work put together by all the teams is already being used to help inform discussions about the implementation of the Inflation Reduction Act,” Levin says. “Being able to tap into the collective intelligence of the hackathon helped uncover new perspectives and policy solutions that can help make an impact in addressing the important policy challenges we face today.”

    While having partners with experience in data science and policy definitely helped, fellow Team Slime Mold member Sara Sheffels, a PhD candidate in MIT’s biomaterials program, says she was surprised how much her experiences outside of science and policy were relevant to the challenge: “My experience organizing MIT’s Graduate Student Union shaped my ideas about more meaningful community involvement in renewables projects on brownfields. It is not meaningful to merely educate people about the importance of renewables or ask them to sign off on a pre-planned project without addressing their other needs.”

    “I wanted to test my limits, gain exposure, and expand my world,” Tadisina adds. “The exposure, friendships, and experiences you gain in such a short period of time are incredible.”

    For Willy R. Vasquez, an electrical and computer engineering PhD student at the University of Texas, the hackathon is not to be missed. “If you’re interested in the intersection of tech, society, and policy, then this is a must-do experience.” More

  • in

    Zero-trust architecture may hold the answer to cybersecurity insider threats

    For years, organizations have taken a defensive “castle-and-moat” approach to cybersecurity, seeking to secure the perimeters of their networks to block out any malicious actors. Individuals with the right credentials were assumed to be trustworthy and allowed access to a network’s systems and data without having to reauthorize themselves at each access attempt. However, organizations today increasingly store data in the cloud and allow employees to connect to the network remotely, both of which create vulnerabilities to this traditional approach. A more secure future may require a “zero-trust architecture,” in which users must prove their authenticity each time they access a network application or data.

    In May 2021, President Joe Biden’s Executive Order on Improving the Nation’s Cybersecurity outlined a goal for federal agencies to implement zero-trust security. Since then, MIT Lincoln Laboratory has been performing a study on zero-trust architectures, with the goals of reviewing their implementation in government and industry, identifying technical gaps and opportunities, and developing a set of recommendations for the United States’ approach to a zero-trust system.

    The study team’s first step was to define the term “zero trust” and understand the misperceptions in the field surrounding the concept. Some of these misperceptions suggest that a zero-trust architecture requires entirely new equipment to implement, or that it makes systems so “locked down” they’re not usable. 

    “Part of the reason why there is a lot of confusion about what zero trust is, is because it takes what the cybersecurity world has known about for many years and applies it in a different way,” says Jeffrey Gottschalk, the assistant head of Lincoln Laboratory’s Cyber Security and Information Sciences Division and study’s co-lead. “It is a paradigm shift in terms of how to think about security, but holistically it takes a lot of things that we already know how to do — such as multi-factor authentication, encryption, and software-defined networking­ — and combines them in different ways.”

    Play video

    Presentation: Overview of Zero Trust Architectures

    Recent high-profile cybersecurity incidents — such as those involving the National Security Agency, the U.S. Office of Personnel Management, Colonial Pipeline, SolarWinds, and Sony Pictures — highlight the vulnerability of systems and the need to rethink cybersecurity approaches.

    The study team reviewed recent, impactful cybersecurity incidents to identify which security principles were most responsible for the scale and impact of the attack. “We noticed that while a number of these attacks exploited previously unknown implementation vulnerabilities (also known as ‘zero-days’), the vast majority actually were due to the exploitation of operational security principles,” says Christopher Roeser, study co-lead and the assistant head of the Homeland Protection and Air Traffic Control Division, “that is, the gaining of individuals’ credentials, and the movement within a well-connected network that allows users to gather a significant amount of information or have very widespread effects.”

    In other words, the malicious actor had “breached the moat” and effectively became an insider.

    Zero-trust security principles could protect against this type of insider threat by treating every component, service, and user of a system as continuously exposed to and potentially compromised by a malicious actor. A user’s identity is verified each time that they request to access a new resource, and every access is mediated, logged, and analyzed. It’s like putting trip wires all over the inside of a network system, says Gottschalk. “So, when an adversary trips over that trip wire, you’ll get a signal and can validate that signal and see what’s going on.”

    In practice, a zero-trust approach could look like replacing a single-sign-on system, which lets users sign in just once for access to multiple applications, with a cloud-based identity that is known and verified. “Today, a lot of organizations have different ways that people authenticate and log onto systems, and many of those have been aggregated for expediency into single-sign-on capabilities, just to make it easier for people to log onto their systems. But we envision a future state that embraces zero trust, where identity verification is enabled by cloud-based identity that’s portable and ubiquitous, and very secure itself.”

    While conducting their study, the team spoke to approximately 10 companies and government organizations that have adopted zero-trust implementations — either through cloud services, in-house management, or a combination of both. They found the hybrid approach to be a good model for government organizations to adopt. They also found that the implementation could take from three to five years. “We talked to organizations that have actually done implementations of zero trust, and all of them have indicated that significant organizational commitment and change was required to be able to implement them,” Gottschalk says.

    But a key takeaway from the study is that there isn’t a one-size-fits-all approach to zero trust. “It’s why we think that having test-bed and pilot efforts are going to be very important to balance out zero-trust security with the mission needs of those systems,” Gottschalk says. The team also recognizes the importance of conducting ongoing research and development beyond initial zero-trust implementations, to continue to address evolving threats.

    Lincoln Laboratory will present further findings from the study at its upcoming Cyber Technology for National Security conference, which will be held June 28-29. The conference will also offer a short course for attendees to learn more about the benefits and implementations of zero-trust architectures.  More

  • in

    Technique protects privacy when making online recommendations

    Algorithms recommend products while we shop online or suggest songs we might like as we listen to music on streaming apps.

    These algorithms work by using personal information like our past purchases and browsing history to generate tailored recommendations. The sensitive nature of such data makes preserving privacy extremely important, but existing methods for solving this problem rely on heavy cryptographic tools requiring enormous amounts of computation and bandwidth.

    MIT researchers may have a better solution. They developed a privacy-preserving protocol that is so efficient it can run on a smartphone over a very slow network. Their technique safeguards personal data while ensuring recommendation results are accurate.

    In addition to user privacy, their protocol minimizes the unauthorized transfer of information from the database, known as leakage, even if a malicious agent tries to trick a database into revealing secret information.

    The new protocol could be especially useful in situations where data leaks could violate user privacy laws, like when a health care provider uses a patient’s medical history to search a database for other patients who had similar symptoms or when a company serves targeted advertisements to users under European privacy regulations.

    “This is a really hard problem. We relied on a whole string of cryptographic and algorithmic tricks to arrive at our protocol,” says Sacha Servan-Schreiber, a graduate student in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and lead author of the paper that presents this new protocol.

    Servan-Schreiber wrote the paper with fellow CSAIL graduate student Simon Langowski and their advisor and senior author Srinivas Devadas, the Edwin Sibley Webster Professor of Electrical Engineering. The research will be presented at the IEEE Symposium on Security and Privacy.

    The data next door

    The technique at the heart of algorithmic recommendation engines is known as a nearest neighbor search, which involves finding the data point in a database that is closest to a query point. Data points that are mapped nearby share similar attributes and are called neighbors.

    These searches involve a server that is linked with an online database which contains concise representations of data point attributes. In the case of a music streaming service, those attributes, known as feature vectors, could be the genre or popularity of different songs.

    To find a song recommendation, the client (user) sends a query to the server that contains a certain feature vector, like a genre of music the user likes or a compressed history of their listening habits. The server then provides the ID of a feature vector in the database that is closest to the client’s query, without revealing the actual vector. In the case of music streaming, that ID would likely be a song title. The client learns the recommended song title without learning the feature vector associated with it.

    “The server has to be able to do this computation without seeing the numbers it is doing the computation on. It can’t actually see the features, but still needs to give you the closest thing in the database,” says Langowski.

    To achieve this, the researchers created a protocol that relies on two separate servers that access the same database. Using two servers makes the process more efficient and enables the use of a cryptographic technique known as private information retrieval. This technique allows a client to query a database without revealing what it is searching for, Servan-Schreiber explains.

    Overcoming security challenges

    But while private information retrieval is secure on the client side, it doesn’t provide database privacy on its own. The database offers a set of candidate vectors — possible nearest neighbors — for the client, which are typically winnowed down later by the client using brute force. However, doing so can reveal a lot about the database to the client. The additional privacy challenge is to prevent the client from learning those extra vectors. 

    The researchers employed a tuning technique that eliminates many of the extra vectors in the first place, and then used a different trick, which they call oblivious masking, to hide any additional data points except for the actual nearest neighbor. This efficiently preserves database privacy, so the client won’t learn anything about the feature vectors in the database.  

    Once they designed this protocol, they tested it with a nonprivate implementation on four real-world datasets to determine how to tune the algorithm to maximize accuracy. Then, they used their protocol to conduct private nearest neighbor search queries on those datasets.

    Their technique requires a few seconds of server processing time per query and less than 10 megabytes of communication between the client and servers, even with databases that contained more than 10 million items. By contrast, other secure methods can require gigabytes of communication or hours of computation time. With each query, their method achieved greater than 95 percent accuracy (meaning that nearly every time it found the actual approximate nearest neighbor to the query point). 

    The techniques they used to enable database privacy will thwart a malicious client even if it sends false queries to try and trick the server into leaking information.

    “A malicious client won’t learn much more information than an honest client following protocol. And it protects against malicious servers, too. If one deviates from protocol, you might not get the right result, but they will never learn what the client’s query was,” Langowski says.

    In the future, the researchers plan to adjust the protocol so it can preserve privacy using only one server. This could enable it to be applied in more real-world situations, since it would not require the use of two noncolluding entities (which don’t share information with each other) to manage the database.  

    “Nearest neighbor search undergirds many critical machine-learning driven applications, from providing users with content recommendations to classifying medical conditions. However, it typically requires sharing a lot of data with a central system to aggregate and enable the search,” says Bayan Bruss, head of applied machine-learning research at Capital One, who was not involved with this work. “This research provides a key step towards ensuring that the user receives the benefits from nearest neighbor search while having confidence that the central system will not use their data for other purposes.” More

  • in

    Security tool guarantees privacy in surveillance footage

    Surveillance cameras have an identity problem, fueled by an inherent tension between utility and privacy. As these powerful little devices have cropped up seemingly everywhere, the use of machine learning tools has automated video content analysis at a massive scale — but with increasing mass surveillance, there are currently no legally enforceable rules to limit privacy invasions. 

    Security cameras can do a lot — they’ve become smarter and supremely more competent than their ghosts of grainy pictures past, the ofttimes “hero tool” in crime media. (“See that little blurry blue blob in the right hand corner of that densely populated corner — we got him!”) Now, video surveillance can help health officials measure the fraction of people wearing masks, enable transportation departments to monitor the density and flow of vehicles, bikes, and pedestrians, and provide businesses with a better understanding of shopping behaviors. But why has privacy remained a weak afterthought? 

    The status quo is to retrofit video with blurred faces or black boxes. Not only does this prevent analysts from asking some genuine queries (e.g., Are people wearing masks?), it also doesn’t always work; the system may miss some faces and leave them unblurred for the world to see. Dissatisfied with this status quo, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), in collaboration with other institutions, came up with a system to better guarantee privacy in video footage from surveillance cameras. Called “Privid,” the system lets analysts submit video data queries, and adds a little bit of noise (extra data) to the end result to ensure that an individual can’t be identified. The system builds on a formal definition of privacy — “differential privacy” — which allows access to aggregate statistics about private data without revealing personally identifiable information.

    Typically, analysts would just have access to the entire video to do whatever they want with it, but Privid makes sure the video isn’t a free buffet. Honest analysts can get access to the information they need, but that access is restrictive enough that malicious analysts can’t do too much with it. To enable this, rather than running the code over the entire video in one shot, Privid breaks the video into small pieces and runs processing code over each chunk. Instead of getting results back from each piece, the segments are aggregated, and that additional noise is added. (There’s also information on the error bound you’re going to get on your result — maybe a 2 percent error margin, given the extra noisy data added). 

    For example, the code might output the number of people observed in each video chunk, and the aggregation might be the “sum,” to count the total number of people wearing face coverings, or the “average” to estimate the density of crowds. 

    Privid allows analysts to use their own deep neural networks that are commonplace for video analytics today. This gives analysts the flexibility to ask questions that the designers of Privid did not anticipate. Across a variety of videos and queries, Privid was accurate within 79 to 99 percent of a non-private system.

    “We’re at a stage right now where cameras are practically ubiquitous. If there’s a camera on every street corner, every place you go, and if someone could actually process all of those videos in aggregate, you can imagine that entity building a very precise timeline of when and where a person has gone,” says MIT CSAIL PhD student ​​Frank Cangialosi, the lead author on a paper about Privid. “People are already worried about location privacy with GPS — video data in aggregate could capture not only your location history, but also moods, behaviors, and more at each location.” 

    Privid introduces a new notion of “duration-based privacy,” which decouples the definition of privacy from its enforcement — with obfuscation, if your privacy goal is to protect all people, the enforcement mechanism needs to do some work to find the people to protect, which it may or may not do perfectly. With this mechanism, you don’t need to fully specify everything, and you’re not hiding more information than you need to. 

    Let’s say we have a video overlooking a street. Two analysts, Alice and Bob, both claim they want to count the number of people that pass by each hour, so they submit a video processing module and ask for a sum aggregation.

    The first analyst is the city planning department, which hopes to use this information to understand footfall patterns and plan sidewalks for the city. Their model counts people and outputs this count for each video chunk.

    The other analyst is malicious. They hope to identify every time “Charlie” passes by the camera. Their model only looks for Charlie’s face, and outputs a large number if Charlie is present (i.e., the “signal” they’re trying to extract), or zero otherwise. Their hope is that the sum will be non-zero if Charlie was present. 

    From Privid’s perspective, these two queries look identical. It’s hard to reliably determine what their models might be doing internally, or what the analyst hopes to use the data for. This is where the noise comes in. Privid executes both of the queries, and adds the same amount of noise for each. In the first case, because Alice was counting all people, this noise will only have a small impact on the result, but likely won’t impact the usefulness. 

    In the second case, since Bob was looking for a specific signal (Charlie was only visible for a few chunks), the noise is enough to prevent them from knowing if Charlie was there or not. If they see a non-zero result, it might be because Charlie was actually there, or because the model outputs “zero,” but the noise made it non-zero. Privid didn’t need to know anything about when or where Charlie appeared, the system just needed to know a rough upper bound on how long Charlie might appear for, which is easier to specify than figuring out the exact locations, which prior methods rely on. 

    The challenge is determining how much noise to add — Privid wants to add just enough to hide everyone, but not so much that it would be useless for analysts. Adding noise to the data and insisting on queries over time windows means that your result isn’t going to be as accurate as it could be, but the results are still useful while providing better privacy. 

    Cangialosi wrote the paper with Princeton PhD student Neil Agarwal, MIT CSAIL PhD student Venkat Arun, assistant professor at the University of Chicago Junchen Jiang, assistant professor at Rutgers University and former MIT CSAIL postdoc Srinivas Narayana, associate professor at Rutgers University Anand Sarwate, and assistant professor at Princeton University and Ravi Netravali SM ’15, PhD ’18. Cangialosi will present the paper at the USENIX Symposium on Networked Systems Design and Implementation Conference in April in Renton, Washington. 

    This work was partially supported by a Sloan Research Fellowship and National Science Foundation grants. More

  • in

    Internet Trust at All Time Low; Not Enough Being Done to Protect Data, Says Internet Society Report

    The Internet Society has today released the findings from its 2016 Global Internet Report in which 59 percent of users admit they would likely not do business with a company which had suffered a data breach. Highlighting the extent of the data breach problem, the report makes key recommendations for building user trust in the […] More