More stories

  • in

    Studying learner engagement during the Covid-19 pandemic

    While massive open online classes (MOOCs) have been a significant trend in higher education for many years now, they have gained a new level of attention during the Covid-19 pandemic. Open online courses became a critical resource for a wide audience of new learners during the first stages of the pandemic — including students whose academic programs had shifted online, teachers seeking online resources, and individuals suddenly facing lockdown or unemployment and looking to build new skills.

    Mary Ellen Wiltrout, director of online and blended learning initiatives and lecturer in digital learning in the Department of Biology, and Virginia “Katie” Blackwell, currently an MIT PhD student in biology, published a paper this summer in the European MOOC Stakeholder Summit (EMOOCs 2021) conference proceedings evaluating data for the online course 7.00x (Introduction to Biology). Their research objective was to better understand whether the shift to online learning that occurred during the pandemic led to increased learner engagement in the course.Blackwell participated in this research as part of the Bernard S. and Sophie G. Gould MIT Summer Research Program (MSRP) in Biology, during the uniquely remote MSRPx-Biology 2020 student cohort. She collaborated on the project while working toward her bachelor’s degree in biochemistry and molecular biology from the University of Texas at Dallas, and collaborated on the research while in Texas. She has since applied and been accepted into MIT’s PhD program in biology.

    “MSRP Biology was a transformative experience for me. I learned a lot about the nature of research and the MIT community in a very short period of time and loved every second of the program. Without MSRP, I would never have even considered applying to MIT for my PhD. After MSRP and working with Mary Ellen, MIT biology became my first-choice program and I felt like I had a shot at getting in,” says Blackwell.

    Play video

    Many MOOC platforms experienced increased website traffic in 2020, with 30 new MOOC-based degrees and more than 60 million new learners.

    “We find that the tremendous, lifelong learning opportunities that MOOCs provide are even more important and sought-after when traditional education is disrupted. During the pandemic, people had to be at home more often, and some faced unemployment requiring a career transition,” says Wiltrout.

    Wiltrout and Blackwell wanted to build a deeper understanding of learner profiles rather than looking exclusively at enrollments. They looked at all available data, including: enrollment demographics (i.e., country and “.edu” participants); proportion of learners engaged with videos, problems, and forums; number of individual engagement events with videos, problems, and forums; verification and performance; and the course “track” level — including auditing (for free) and verified (paying and receiving access to additional course content, including access to a comprehensive competency exam). They analyzed data in these areas from five runs of 7.00x in this study, including three pre-pandemic runs of April, July, and November 2019 and two pandemic runs of March and July 2020. 

    The March 2020 run had the same count of verified-track participants as all three pre-pandemic runs combined. The July 2020 run enrolled nearly as many verified-track participants as the March 2020 run. Wiltrout says that introductory biology content may have attracted great attention during the early days and months of the Covid-19 pandemic, as people may have had a new (or renewed) interest in learning about (or reviewing) viruses, RNA, the inner workings of cells, and more.

    Wiltrout and Blackwell found that the enrollment count for the March 2020 run of the course increased at almost triple the rate of the three pre-pandemic runs. During the early days of March 2020, the enrollment metrics appeared similar to enrollment metrics for the April 2019 run — both in rate and count — but the enrollment rate increased sharply around March 15, 2020. The July 2020 run began with more than twice as many learners already enrolled by the first day of the course, but continued with half the enrollment rate of the March 2020 course. In terms of learner demographics, during the pandemic, there was a higher proportion of learners with .edu addresses, indicating that MOOCs were often used by students enrolled in other schools. 

    Viewings of course videos increased at the beginning of the pandemic. During the March 2020 run, both verified-track and certified participants viewed far more unique videos during March 2020 than in the pre-pandemic runs of the course; even auditor-track learners — not aiming for certification — still viewed all videos offered. During the July 2020 run, however, both verified-track and certified participants viewed far fewer unique videos than during all prior runs. The proportion of participants who viewed at least one video decreased in the July 2020 run to 53 percent, from a mean of 64 percent in prior runs. Blackwell and Wiltrout say that this decrease — as well as the overall dip in participation in July 2020 — might be attributed to shifting circumstances for learners that allowed for less time to watch videos and participate in the course, as well as some fatigue from the extra screen time.

    The study found that 4.4 percent of March 2020 participants and 4.5 percent of July 2020 participants engaged through forum posting — which was 1.4 to 3.3 times higher than pre-pandemic proportions of forum posting. The increase in forum engagement may point to a desire for community engagement during a time when many were isolated and sheltering in place.

    “Through the day-to-day work of my research team and also through the engagement of the learners in 7.00x, we can see that there is great potential for meaningful connections in remote experiences,” says Wiltrout. “An increase in participation for an online course may not always remain at the same high level, in the long term, but overall, we’re continuing to see an increase in the number of MOOCs and other online programs offered by all universities and institutions, as well as an increase in online learners.” More

  • in

    Exploring the human stories behind the data

    Shaking in the back of a police cruiser, handcuffs digging into his wrists, Brian Williams was overwhelmed with fear. He had been pulled over, but before he was asked for his name, license, or registration, a police officer ordered him out of his car and into back of the police cruiser, saying into his radio, “Black male detained.” The officer’s explanation for these actions was: “for your safety and mine.”

    Williams walked away from the experience with two tickets, a pair of bruised wrists, and a desire to do everything in his power to prevent others from experiencing the utter powerlessness he had felt.

    Now an MIT senior majoring in biological engineering and minoring in Black studies, Williams has continued working to empower his community. Through experiences in and out of the classroom, he has leveraged his background in bioengineering to explore interests in public health and social justice, specifically looking at how the medical sector can uplift and support communities of color.

    Williams grew up in a close-knit family and community in Broward County, Florida, where he found comfort in the routine of Sunday church services, playing outside with friends, and cookouts on the weekends. Broward County was home to him — a home he felt deeply invested in and indebted to.

    “It takes a village. The Black community has invested a lot in me, and I have a lot to invest back in it,” he says.

    Williams initially focused on STEM subjects at MIT, but in his sophomore year, his interests in exploring data science and humanities research led him to an Undergraduate Research Opportunities Program (UROP) project in the Department of Political Science. Working with Professor Ariel White, he analyzed information on incarceration and voting rights, studied the behavior patterns of police officers, and screened 911 calls to identify correlations between how people described events to how the police responded to them.

    In the summer before his junior year, Williams also joined MIT’s Civic Data Design Lab, where he worked as a researcher for the Missing Data Project, which uses both journalism and data science to visualize statistics and humanize the people behind the numbers. As the project’s name suggests, there is often much to be learned from seeking out data that aren’t easily available. Using datasets and interviews describing how the pandemic affected Black communities, Williams and a team of researchers created a series called the Color of Covid, which told the stories behind the grim statistics on race and the pandemic.

    The following year, Williams undertook a research-and-development internship with the biopharmaceutical company Amgen in San Francisco, working on protein engineering to combat autoimmune diseases. Because this work was primarily in the lab, focusing on science-based applications, he saw it as an opportunity to ask himself: “Do I want to dedicate my life to this area of bioengineering?” He found the issue of social justice to be more compelling.

    At the same time, Williams was drawn toward tackling problems the local Black community was experiencing related to the pandemic. He found himself thinking deeply about how to educate the public, address disparities in case rates, and, above all, help people.

    Working through Amgen’s Black Employee Resource Group and its Diversity, Inclusion, and Belonging Team, Williams crafted a proposal, which the company adopted, for addressing Covid-19 vaccination misinformation in Black and Brown communities in San Mateo and San Francisco County. He paid special attention to how to frame vaccine hesitancy among members of these communities, understanding that a longstanding history of racism in scientific discovery and medicine led many Black and Brown people to distrust the entire medical industry.

    “Trying to meet people where they are is important,” Williams says.

    This experience reinforced the idea for Williams that he wanted to do everything in his power to uplift the Black community.

    “I think it’s only right that I go out and I shine bright because it’s not easy being Black. You know, you have to work twice as hard to get half as much,” he says.

    As the current political action co-chair of the MIT Black Students’ Union (BSU), Williams also works to inspire change on campus, promoting and participating in events that uplift the BSU. During his Amgen internship, he also organized the MIT Black History Month Takeover Series, which involved organizing eight events from February through the beginning of spring semester. These included promotions through social media and virtual meetings for students and faculty. For his leadership, he received the “We Are Family” award from the BSU executive board.

    Williams prioritizes community in everything he does, whether in the classroom, at a campus event, or spending time outside in local communities of color around Boston.

    “The things that really keep me going are the stories of other people,” says Williams, who is currently applying to a variety of postgraduate programs. After receiving MIT endorsement, he applied to the Rhodes and Marshall Fellowships; he also plans to apply to law school with a joint master’s degree in public health and policy.

    Ultimately, Williams hopes to bring his fight for racial justice to the policy level, looking at how a long, ongoing history of medical racism has led marginalized communities to mistrust current scientific endeavors. He wants to help bring about new legislation to fix old systems which disproportionately harm communities of color. He says he aims to be “an engineer of social solutions, one who reaches deep into their toolbox of social justice, pulling the levers of activism, advocacy, democracy, and legislation to radically change our world — to improve our social institutions at the root and liberate our communities.” While he understands this is a big feat, he sees his ambition as an asset.

    “I’m just another person with huge aspirations, and an understanding that you have to go get it if you want it,” he says. “You feel me? At the end of the day, this is just the beginning of my story. And I’m grateful to everyone in my life that’s helping me write it. Tap in.” More

  • in

    3 Questions: Peko Hosoi on the data-driven reasoning behind MIT’s Covid-19 policies for the fall

    As students, faculty, and staff prepare for a full return to the MIT campus in the weeks ahead, procedures for entering buildings, navigating classrooms and labs, and interacting with friends and colleagues will likely take some getting used to.

    The Institute recently reinforced its policies for indoor masking and has also continued to require regular testing for people who live, work, or study on campus — procedures that apply to both vaccinated and unvaccinated individuals. Vaccination is required for all students, faculty, and staff on campus unless a medical or religious exemption is granted.

    These and other policies adopted by MIT to control the spread of Covid-19 have been informed by modeling efforts from a volunteer group of MIT faculty, students, and postdocs. The collaboration, dubbed Isolat, was co-founded by Anette “Peko” Hosoi, the Neil and Jane Pappalardo Professor of Mechanical Engineering and associate dean in the School of Engineering.

    The group, which is organized through MIT’s Institute for Data, Systems, and Society (IDSS), has run numerous models to show how measures such as mask wearing, testing, ventilation, and quarantining could affect Covid-19’s spread. These models have helped to shape MIT’s Covid-19 policies throughout the pandemic, including its procedures for returning to campus this fall.

    Hosoi spoke with MIT News about the data-backed reasoning behind some of these procedures, including indoor masking and regular testing, and how a “generous community” will help MIT safely weather the virus and its variants.

    Q: Take us through how you have been modeling Covid-19 and its variants, in regard to helping MIT shape its Covid policies. What’s the approach you’ve taken, and why?

    A: The approach we’re taking uses a simple counting exercise developed in IDSS to estimate the balance of testing, masking, and vaccination that is required to keep the virus in check. The underlying objective is to find infected people faster, on average, than they can infect others, which is captured in a simple algebraic expression. Our objective can be accomplished either by speeding up the rate of finding infected people (i.e. increasing testing frequency) or slowing down the rate of infection (i.e. increasing masking and vaccination) or by a combination of both. To give you a sense of the numbers, balances for different levels of testing are shown in the chart below for a vaccine efficacy of 67 percent and a contagious period of 18 days (which are the CDC’s latest parameters for the Delta variant).

    The vertical axis shows the now-famous reproduction number R0, i.e. the average number of people that one infected person will infect throughout the course of their illness. These R0 are averages for the population, and in specific circumstances the spreading could be more than that.

    Each blue line represents a different testing frequency: Below the line, the virus is controlled; above the line, it spreads. For example, the dotted blue line shows the boundary if we rely solely on vaccination with no testing. In that case, even if everyone is vaccinated, we can only control up to an R0 of about 3.  Unfortunately, the CDC places R0 of the Delta variant somewhere between 5 and 9, so vaccination alone is insufficient to control the spread. (As an aside, this also means that given the efficacy estimates for the current vaccines, herd immunity is not possible.)

    Next consider the dashed blue line, which represents the stability boundary if we test everyone once per week. If our vaccination rate is greater than about 90 percent, testing one time per week can control even the CDC’s most pessimistic estimate for the Delta variant’s R0.

    Q: In returning to campus over the next few weeks, indoor masking and regular testing are required of every MIT community member, even those who are vaccinated. What in your modeling has shown that each of these policies is necessary?

    A: Given that the chart above shows that vaccination and weekly testing are sufficient to control the virus, one should certainly ask “Why have we reinstated indoor masking?” The answer is related to the fact that, as a university, our population turns over once a year; every September we bring in a few thousand new people. Those people are coming from all over the world, and some of them may not have had the opportunity to get vaccinated yet. The good news is that MIT Medical has vaccines and will be administering them to any unvaccinated students as soon as they arrive; the bad news is that, as we all know, it takes three to five weeks for resistance to build up, depending on the vaccine. This means that we should think of August and September as a transition period during which the vaccination rates may fluctuate as new people arrive. 

    The other revelation that has informed our policies for September is the recent report from the CDC that infected vaccinated people carry roughly the same viral load as unvaccinated infected people. This suggests that vaccinated people — although they are highly unlikely to get seriously ill — are a consequential part of the transmission chain and can pass the virus along to others. So, in order to avoid giving the virus to people who are not yet fully vaccinated during the transition period, we all need to exercise a little extra care to give the newly vaccinated time for their immune systems to ramp up. 

    Q: As the fall progresses, what signs are you looking for that might shift decisions on masking and testing on campus?

    A: Eventually we will have to shift responsibility toward individuals rather than institutions, and allow people to make decisions about masks and testing based on their own risk tolerance. The success of the vaccines in suppressing severe illness will enable us to shift to a position in which our objective is not necessarily to control the spread of the virus, but rather to reduce the risk of serious outcomes to an acceptable level. There are many people who believe we need to make this adjustment and wean ourselves off pandemic living. They are right; we cannot continue like this forever. However, we have not played all our cards yet, and, in my opinion, we need to carefully consider what’s left in our hand before we abdicate institutional responsibility.

    The final ace we have to play is vaccinating kids. It is important to remember that we have many people in our community with kids who are too young to be vaccinated and, understandably, those parents do not want to bring Covid home to their children. Furthermore, our campus is not just a workplace; it is also home to thousands of people, some of whom have children living in our residences or attending an MIT childcare center. Given that context, and the high probability that a vaccine will be approved for children in the near future, it is my belief that our community has the empathy and fortitude to try to keep the virus in check until parents have the option to protect their children with vaccines. 

    Bearing in mind that children constitute an unprotected portion of our population, let me return to the original question and speculate on the fate of masks and testing in the fall. Regarding testing, the analysis suggests that we cannot give that up entirely if we would like to control the spread of the virus. Second, control of the virus is not the only benefit we get from testing. It also gives us situational awareness, serves as an early warning beacon, and provides information that individual members of the community can use as they make decisions about their own risk budget. Personally, I’ve been testing for a year now and I find it easy and reassuring. Honestly, it’s nice to know that I’m Covid-free before I see friends (outside!) or go home to my family.

    Regarding masks, there is always uncertainty around whether a new variant will arise or whether vaccine efficacy will fade, but, given the current parameters and our analysis, my hope is that we will be in a position to provide some relief on the mask mandate once the incoming members of our population have been fully vaccinated. I also suspect that whenever the mask mandate is lifted, masks are not likely to go away. There are certainly situations in which I will continue to wear a mask regardless of the mandate, and many in our community will continue to feel safer wearing masks even when they are not required.

    I believe that we are a generous community and that we will be willing to take precautions to help keep each other healthy. The students who were on campus last year did an outstanding job, and they have given me a tremendous amount of faith that we can be considerate and good to one another even in extremely trying times.

    Previous item
    Next item More

  • in

    “AI for Impact” lives up to its name

    For entrepreneurial MIT students looking to put their skills to work for a greater good, the Media Arts and Sciences class MAS.664 (AI for Impact) has been a destination point. With the onset of the pandemic, that goal came into even sharper focus. Just weeks before the campus shut down in 2020, a team of students from the class launched a project that would make significant strides toward an open-source platform to identify coronavirus exposures without compromising personal privacy.

    Their work was at the heart of Safe Paths, one of the earliest contact tracing apps in the United States. The students joined with volunteers from other universities, medical centers, and companies to publish their code, alongside a well-received white paper describing the privacy-preserving, decentralized protocol, all while working with organizations wishing to launch the app within their communities. The app and related software eventually got spun out into the nonprofit PathCheck Foundation, which today engages with public health entities and is providing exposure notifications in Guam, Cyprus, Hawaii, Minnesota, Alabama, and Louisiana.

    The formation of Safe Paths demonstrates the special sense among MIT researchers that “we can launch something that can help people around the world,” notes Media Lab Associate Professor Ramesh Raskar, who teaches the class together with Media Lab Professor Alex “Sandy” Pentland and Media Lab Lecturer Joost Bonsen. “To have that kind of passion and ambition — but also the confidence that what you create here can actually be deployed globally — is kind of amazing.”

    AI for Impact, created by Pentland, began meeting two decades ago under the course name Development Ventures, and has nurtured multiple thriving businesses. Examples of class ventures that Pentland incubated or co-founded include Dimagi, Cogito, Ginger, Prosperia, and Sanergy.

    The aim-high challenge posed to each class is to come up with a business plan that touches a billion people, and it can’t all be in one country, Pentland explains. Not every class effort becomes a business, “but 20 percent to 30 percent of students start something, which is great for an entrepreneur class,” says Pentland.

    Opportunities for Impact

    The numbers behind Dimagi, for instance, are striking. Its core product CommCare has helped front-line health workers provide care for more than 400 million people in more than 130 countries around the world. When it comes to maternal and child care, Dimagi’s platform has registered one in every 110 pregnancies worldwide. This past year, several governments around the world deployed CommCare applications for Covid-19 response — from Sierra Leone and Somalia to New York and Colorado.

    Spinoffs like Cogito, Prosperia, and Ginger have likewise grown into highly successful companies. Cogito helps a million people a day gain access to the health care they need; Prosperia helps manage social support payments to 80 million people in Latin America; and Ginger handles mental health services for over 1 million people.

    The passion behind these and other class ventures points to a central idea of the class, Pentland notes: MIT students are often looking for ways to build entrepreneurial businesses that enable positive social change.

    During the spring 2021 class, for example, a number of promising student projects included tools to help residents of poor communities transition to owning their homes rather than renting, and to take better control of their community health.

    “It’s clear that the people who are graduating from here want to do something significant with their lives … they want to have an impact on their world,” Pentland says. “This class enables them to meet other people who are interested in doing the same thing, and offers them some help in starting a company to do it.”

    Many of the students who join the class come in with a broad set of interests. Guest lectures, case studies of other social entrepreneurship projects, and an introduction to a broad ecosystem of expertise and funding, then helps students to refine their general ideas into specific and viable projects.

    A path toward confronting a pandemic 

    Raskar began co-teaching the class in 2019, and brought a “Big AI” focus to the Development Ventures class, inspired by an AI for Impact team he had set up at his former employer, Facebook. “What I realized is that companies like Google or Facebook or Amazon actually have enough data about all of us that they can solve major problems in our society — climate, transportation, health, and so on,” he says. “This is something we should think about more seriously: how to use AI and data for positive social impact, while protecting privacy.”

    Early into the spring 2020 class, as students were beginning to consider their own projects, Raskar approached the class about the emerging coronavirus outbreak. Students like Kristen Vilcans recognized the urgency, and the opportunity. She and 10 other students joined forces to work on a project that would focus on Covid-19.

    “Students felt empowered to do something to help tackle the spread of this alarming new virus,” Raskar recalls. “They immediately began to develop data- and AI-based solutions to one of the most critical pieces of addressing a pandemic: halting the chain of infections. They created and launched one of the first digital contact tracing and exposure notification solutions in the U.S., developing an early alert system that engaged the public and protected privacy.” 

    Raskar looks back on the moment when a core group of students coalesced into a team. “It was very rare for a significant part of the class to just come together saying, ‘let’s do this, right away.’ It became as much a movement as a venture.”

    Group discussions soon began to center around an open-source, privacy-first digital set of tools for Covid-19 contact tracing. For the next two weeks, right up to the campus shutdown in March 2020, the team took over two adjacent conference rooms in the Media Lab, and started a Slack messaging channel devoted to the project. As the team members reached out to an ever-wider circle of friends, colleagues, and mentors, the number of participants grew to nearly 1,600 people, coming together virtually from all corners of the world.

    Kaushal Jain, a Harvard Business School student who had cross-registered for the spring 2020 class to get to know the MIT ecosystem, was also an early participant in Safe Paths. He wrote up an initial plan for the venture and began working with external organizations to figure out how to structure it into a nonprofit company. Jain eventually became the project’s lead for funding and partnerships.

    Vilcans, a graduate student in system design and management, served as Safe Paths’ communications lead through July 2020, while still working a part-time job at Draper Laboratory and taking classes.

    “There are these moments when you want to dive in, you want to contribute and you want to work nonstop,” she says, adding that the experience was also a wake-up call on how to manage burnout, and how to balance what you need as a person while contributing to a high-impact team. “That’s important to understand as a leader for the future.”

    MIT recognized Vilcan’s contributions later that year with the 2020 SDM Student Award for Leadership, Innovation, and Systems Thinking. 

    Jain, too, says the class gave him more than he could have expected.

    “I made strong friendships with like-minded people from very different backgrounds,” he says. “One key thing that I learned was to be flexible about the kind of work you want to do. Be open and see if there’s an opportunity, either through crisis or through something that you believe could really change a lot of things in the world. And then just go for it.” More

  • in

    Study finds lockdowns effective at reducing travel in Sierra Leone

    Throughout the Covid-19 pandemic, governments have used data on people’s movements to inform strategies for containing the spread of the virus. In Europe and the United States, for example, contact-tracing apps have used Bluetooth signals in smartphones to alert people when they’ve spent time near app users who have tested positive for Covid-19. 

    But how can governments make evidence-based decisions in countries where such fine-grained data isn’t available? In recent findings, MIT researchers, in collaboration with Sierra Leone’s government, use cell tower records in Sierra Leone to show that people were traveling less during lockdowns. “When the government implemented novel three-day lockdowns, there was a dual aim to reduce virus spread and also limit social impacts, like increased hunger or food insecurity,” says Professor Lily L. Tsai, MIT Governance Lab’s (MIT GOV/LAB) director and founder. “We wanted to know if shorter lockdowns would be successful.”   

    The research was conducted by MIT GOV/LAB and MIT’s Civic Data Design Lab (CDDL), in partnership with Sierra Leone’s Directorate for Science, Innovation and Technology (DSTI) and Africell, a wireless service provider. The findings will be published as a chapter in the book “Urban Informatics and Future Cities,” a selection of research submitted to the 2021 Computational Urban Planning and Urban Management conference. 

    A proxy for mobility: cell tower records

    Any time someone’s cellphone sends or receives a text, or makes or receives a call, the nearest cell tower is pinged. The tower collects some data (call-detail records, or CDRs), including the date and time of the event and the phone number. By tracking which towers a certain (anonymized) phone number pings, the researchers could approximately measure how much someone was moving around.  

    These measurements showed that, on average, people were traveling less during lockdowns than before lockdowns. Professor Sarah Williams, CDDL’s director, says the analysis also revealed frequently traveled routes, which “allow the government to develop region-specific lockdowns.” 

    While more fine-grained GPS data from smartphones paint a more accurate picture of movement, “there just isn’t a systematic effort in many developing countries to build the infrastructure to collect this data,” says Innocent Ndubuisi-Obi Jr., an MIT GOV/LAB research associate. “In many cases, the closest thing we can use as a proxy for mobility is CDR data.”

    Measuring the effectiveness of lockdowns

    Sierra Leone’s government imposed the three-day lockdown, which required people stay in their homes, in April 2020. A few days after the lockdown ended, a two-week inter-district travel ban began. “Analysis of aggregated CDRs was the quickest means to understanding mobility prior to and during lockdowns,” says Michala Mackay, DSTI’s director and chief operating officer. 

    The data MIT and DSTI received was anonymized — an essential part of ensuring the privacy of the individuals whose data was used. 

    Extracting meaning from the data, though, presented some challenges. Only about 75 percent of adults in Sierra Leone own cellphones, and people sometimes share phones. So the towers pinged by a specific phone might actually represent the movement of several people, and not everyone’s movement will be captured by cell towers. 

    Furthermore, some districts in Sierra Leone have significantly fewer towers than others. When the data were collected, Falaba, a rural district in the northeast, had only five towers, while over 100 towers were clustered in and around Freetown, the capital. In areas with very few towers, it’s harder to detect changes in how much people are traveling. 

    Since each district had a unique tower distribution, the researchers looked at each district separately, establishing a baseline for average distance traveled in each district before the lockdowns, then measuring how movement compared to this average during lockdowns. They found that travel to other districts declined in every district, by as much as 72 percent and by as little as 16 percent. Travel within districts also dropped in all but one district. 

    This map shows change in average distance traveled per trip to other districts in Sierra Leone in 2020.

    Image courtesy of the MIT GOV/LAB and CDDL.

    Previous item
    Next item

    Lockdowns have greater costs in poorer areas

    While movement did decline in all districts, the effect was less dramatic in poorer, more sparsely populated areas. This finding was to be expected; other studies have shown that poorer people often can’t afford to comply with lockdowns, since they can’t take time off work or need to travel to get food. Evidence showing how lockdowns are less effective in poorer areas highlights the importance of distributing resources to poorer areas during crises, which could both provide support during a particularly challenging time and make it less costly for people to comply with social distancing measures. 

    “In low-income communities that demonstrated moderate or low compliance, one of the most common reasons why people left their homes was to search for water,” says Mackay. “A policy takeaway was that lockdowns should only be implemented in extreme cases and for no longer than three days at a time.”

    Throughout the project, the researchers collaborated intimately with DSTI. “This meant government officials learned along with the MIT researchers and added crucial local knowledge,” says Williams. “We hope this model can be replicated elsewhere — especially during crises.” 

    The researchers will be developing an MITx course teaching government officials and MIT students how to collaboratively use CDR data during crises, with a focus on how to do the analysis in a way that protects people’s privacy.

    Ndubuisi-Obi Jr. also has led a training on CDR analysis for Sierra Leonean government officials and has written a guide on how policymakers can use CDRs safely and effectively. “Some of these data sets will help us answer really important policy questions, and we have to balance that with the privacy risks,” he says. More

  • in

    Lincoln Laboratory convenes top network scientists for Graph Exploitation Symposium

    As the Covid-19 pandemic has shown, we live in a richly connected world, facilitating not only the efficient spread of a virus but also of information and influence. What can we learn by analyzing these connections? This is a core question of network science, a field of research that models interactions across physical, biological, social, and information systems to solve problems.

    The 2021 Graph Exploitation Symposium (GraphEx), hosted by MIT Lincoln Laboratory, brought together top network science researchers to share the latest advances and applications in the field.

    “We explore and identify how exploitation of graph data can offer key technology enablers to solve the most pressing problems our nation faces today,” says Edward Kao, a symposium organizer and technical staff in Lincoln Laboratory’s AI Software Architectures and Algorithms Group.

    The themes of the virtual event revolved around some of the year’s most relevant issues, such as analyzing disinformation on social media, modeling the pandemic’s spread, and using graph-based machine learning models to speed drug design.

    “The special sessions on influence operations and Covid-19 at GraphEx reflect the relevance of network and graph-based analysis for understanding the phenomenology of these complicated and impactful aspects of modern-day life, and also may suggest paths forward as we learn more and more about graph manipulation,” says William Streilein, who co-chaired the event with Rajmonda Caceres, both of Lincoln Laboratory.

    Social networks

    Several presentations at the symposium focused on the role of network science in analyzing influence operations (IO), or organized attempts by state and/or non-state actors to spread disinformation narratives.  

    Lincoln Laboratory researchers have been developing tools to classify and quantify the influence of social media accounts that are likely IO accounts, such as those willfully spreading false Covid-19 treatments to vulnerable populations.

    “A cluster of IO accounts acts as an echo chamber to amplify the narrative. The vulnerable population is then engaging in these narratives,” says Erika Mackin, a researcher developing the tool, called RIO or Reconnaissance of Influence Operations.

    To classify IO accounts, Mackin and her team trained an algorithm to detect probable IO accounts in Twitter networks based on a specific hashtag or narrative. One example they studied was #MacronLeaks, a disinformation campaign targeting Emmanuel Macron during the 2017 French presidential election. The algorithm is trained to label accounts within this network as being IO on the basis of several factors, such as the number of interactions with foreign news accounts, the number of links tweeted, or number of languages used. Their model then uses a statistical approach to score an account’s level of influence in spreading the narrative within that network.

    The team has found that their classifier outperforms existing detectors of IO accounts, because it can identify both bot accounts and human-operated ones. They’ve also discovered that IO accounts that pushed the 2017 French election disinformation narrative largely overlap with accounts influentially spreading Covid-19 pandemic disinformation today. “This suggests that these accounts will continue to transition to disinformation narratives,” Mackin says.

    Pandemic modeling

    Throughout the Covid-19 pandemic, leaders have been looking to epidemiological models, which predict how disease will spread, to make sound decisions. Alessandro Vespignani, director of the Network Science Institute at Northeastern University, has been leading Covid-19 modeling efforts in the United States, and shared a keynote on this work at the symposium.

    Besides taking into account the biological facts of the disease, such as its incubation period, Vespignani’s model is especially powerful in its inclusion of community behavior. To run realistic simulations of disease spread, he develops “synthetic populations” that are built by using publicly available, highly detailed datasets about U.S. households. “We create a population that is not real, but is statistically real, and generate a map of the interactions of those individuals,” he says. This information feeds back into the model to predict the spread of the disease. 

    Today, Vespignani is considering how to integrate genomic analysis of the virus into this kind of population modeling in order to understand how variants are spreading. “It’s still a work in progress that is extremely interesting,” he says, adding that this approach has been useful in modeling the dispersal of the Delta variant of SARS-CoV-2. 

    As researchers model the virus’ spread, Lucas Laird at Lincoln Laboratory is considering how network science can be used to design effective control strategies. He and his team are developing a model for customizing strategies for different geographic regions. The effort was spurred by the differences in Covid-19 spread across U.S. communities, and what the researchers found to be a gap in intervention modeling to address those differences.

    As examples, they applied their planning algorithm to three counties in Florida, Massachusetts, and California. Taking into account the characteristics of a specific geographic center, such as the number of susceptible individuals and number of infections there, their planner institutes different strategies in those communities throughout the outbreak duration.

    “Our approach eradicates disease in 100 days, but it also is able to do it with much more targeted interventions than any of the global interventions. In other words, you don’t have to shut down a full country.” Laird adds that their planner offers a “sandbox environment” for exploring intervention strategies in the future.

    Machine learning with graphs

    Graph-based machine learning is receiving increasing attention for its potential to “learn” the complex relationships between graphical data, and thus extract new insights or predictions about these relationships. This interest has given rise to a new class of algorithms called graph neural networks. Today, graph neural networks are being applied in areas such as drug discovery and material design, with promising results.

    “We can now apply deep learning much more broadly, not only to medical images and biological sequences. This creates new opportunities in data-rich biology and medicine,” says Marinka Zitnik, an assistant professor at Harvard University who presented her research at GraphEx.

    Zitnik’s research focuses on the rich networks of interactions between proteins, drugs, disease, and patients, at the scale of billions of interactions. One application of this research is discovering drugs to treat diseases with no or few approved drug treatments, such as for Covid-19. In April, Zitnik’s team published a paper on their research that used graph neural networks to rank 6,340 drugs for their expected efficacy against SARS-CoV-2, identifying four that could be repurposed to treat Covid-19.

    At Lincoln Laboratory, researchers are similarly applying graph neural networks to the challenge of designing advanced materials, such as those that can withstand extreme radiation or capture carbon dioxide. Like the process of designing drugs, the trial-and-error approach to materials design is time-consuming and costly. The laboratory’s team is developing graph neural networks that can learn relationships between a material’s crystalline structure and its properties. This network can then be used to predict a variety of properties from any new crystal structure, greatly speeding up the process of screening materials with desired properties for specific applications.

    “Graph representation learning has emerged as a rich and thriving research area for incorporating inductive bias and structured priors during the machine learning process, with broad applications such as drug design, accelerated scientific discovery, and personalized recommendation systems,” Caceres says. 

    A vibrant community

    Lincoln Laboratory has hosted the GraphEx Symposium annually since 2010, with the exception of last year’s cancellation due to Covid-19. “One key takeaway is that despite the postponement from last year and the need to be virtual, the GraphEx community is as vibrant and active as it’s ever been,” Streilein says. “Network-based analysis continues to expand its reach and is applied to ever-more important areas of science, society, and defense with increasing impact.”

    In addition to those from Lincoln Laboratory, technical committee members and co-chairs of the GraphEx Symposium included researchers from Harvard University, Arizona State University, Stanford University, Smith College, Duke University, the U.S. Department of Defense, and Sandia National Laboratories. More

  • in

    Lockdowns reveal inequities in opportunities for walking activities

    Lockdowns saved lives during the global SARS-CoV-2 pandemic. But as much as they have slowed the spread of Covid-19, there have been some unintended consequences.

    New MIT research shows that lockdowns in 10 metropolitan areas throughout the United States led to a marked reduction in walking. These decreases were mostly seen among residents living in lower-income areas of the city, effectively reducing access to physical activity for minorities and people suffering from illnesses such as obesity and diabetes.

    “Walking is the cheapest, most accessible physical exercise that you can do,” says Esteban Moro, visiting research scientist in the MIT Connection Science Group and senior author on the Nature Communications paper published on June 16. “Places in which people have lower incomes, less park access, and more obesity prevalence were more affected by this walking reduction — which you can think of as another pandemic, the lack of access to affordable exercise.”

    The research focused on recreational versus utilitarian walking done by residents in the U.S. cities of New York, Los Angeles, Chicago, Boston, Miami, Dallas, San Francisco, Seattle, Philadelphia, and Washington D.C. (Utilitarian walking is defined as having a goal; for example, walking to the store or to public transportation. Recreational walking is a walk meant for leisure or exercise.)

    Comparing cellphone data from February 2020 to different time points throughout 2020 lockdowns, the researchers saw an average 70 percent decrease in the number of walks — which remained down by about 18 percent after loosened restrictions — a 50 percent decrease in distance walked, and a 72 percent decrease in utilitarian walking — which remained down by 39 percent even after restrictions were lifted.

    On their face, these findings may not be surprising. When people couldn’t leave their homes, they walked less. But digging deeper into the data yields troubling insights. For example, people in lower-income regions are more likely to rely on public transportation. Lockdowns cut back on those services, meaning fewer people walking to trains and buses.

    Another statistic showed that people in higher-income areas reduced their number of utilitarian walks but were able to replace some of the lost movement with recreational walks around their neighborhoods or in nearby parks.

    “People in higher-income areas generally not only have a park nearby, but also have jobs that give them a degree of flexibility. Jobs that permit them to take a break and walk,” says Moro. “People in the low-income regions often don’t have the ability, the opportunity or even the facilities to actually do this.”

    How it was done

    The researchers used de-identified mobile data obtained through a partnership within the company Cuebiq’s Data for Good COVID-19 Collaborative program. The completely anonymized dataset consisted of GPS locations gathered from smartphone accelerometers from users who opted into the program. Moro and his collaborators took these data and, using specifically designed algorithms, determined when people walked, for how long, and for what purpose. They compared this information from before the pandemic, at different points throughout lockdown, and at a point when most restrictions had been eased. They matched the GPS-identified locations of the smartphones with census data to understand income level and other demographics.

    To make sure their dataset was robust, they only used information from areas that could reasonably be considered pedestrian. The researchers also acknowledge that the dataset may be incomplete, considering people may have occasionally walked without their phones on them.

    Leisure versus utilitarian walks were separated according to distance and/or destination. Utilitarian walks are usually shorter and involve stops at destinations other than the starting point. Leisure walks are longer and usually happen closer to home or in dedicated outdoor spaces.

    For example, many of the walks recorded pre-Covid-19 were short and occurred at around 7 a.m. and between 3 and 5 p.m., which would indicate a walking commute. These bouts of walking were replaced on weekends by short walks around noon.

    The key takeaway is that most walking in cities occurs with the goal of getting to a place. If people don’t have the opportunity to walk to places they need to go, they will reduce their walking activity overall. But when provided opportunity and access, people can supplement utilitarian activity with leisure walking.

    What can be done about it

    Taking into account the public health implications of physical inactivity, the authors argue a reduction in access to walking should be considered a second pandemic and be addressed with the same rigor as the Covid-19 pandemic.

    They suggest several tactical urbanization strategies (defined as non-permanent but easily accessible measures) to increase safety and appeal for both utilitarian and recreational walkers. Many of these have already been implemented in various cities around the world to ease economic and other hardships of the pandemic. Sections of city streets have been closed off to cars on weekends or other non-busy times to allow for pedestrian walking areas. Restaurants have been given curb space to allow for outdoor dining.

    “But most of these pop-up pedestrian areas happen in downtown, where people are high-income and have easier access to more walking opportunities,” notes Moro.

    The same attention needs to be paid to lower-income areas, the researchers argue. This study’s data showed that people explored their own neighborhoods in a recreational way more during lockdown than pre-pandemic. Such wanderings, the researcher say, should be encouraged by making any large, multi-lane intersections safer to cross for the elderly, sick, or those with young children. And local parks, usually seen as places for running laps, should be made more attractive destinations by adding amenities like water fountains, shaded pavilions, and hygiene and sanitation spaces.

    This study was unique in that its data came straight from mobile devices, rather than being self-reported in surveys. This more reliable method of tracking made this study more data-driven than other, similar efforts. And the geotagged data allowed the researchers to dig into socioeconomic trends associated with the findings.

    This is the team’s first analysis of physical activity during and just after lockdown. They hope to use lessons learned from this and planned follow-ups to encourage more permanent adoption of pedestrian-friendly pandemic-era changes.

    The Connection Science Group, co-led by faculty member Alex “Sandy” Pentland — who, along with Moro was a co-author on the paper along with six others from the UK, Brazil, and Australia — is part of the MIT Sociotechnical Systems Research Center within the MIT Institute for Data, Systems, and Society. The collaborative research exemplified in this study is core to the mission of the SSRC; in pairing computer science with public health, the group not only observes trends but also contextualizes data and use them to make improvements for everyone.

    “SSRC merges both the social and technological components of the research,” says Moro. “We’re not only building an analysis, but going beyond that to propose new policies and interventions to change what we are seeing for the better.” More