More stories

  • in

    MIT Faculty Founder Initiative announces three winners of entrepreneurship awards

    Patients with intractable cancers, chronic pain sufferers, and people who depend on battery-powered medical implants may all benefit from the ideas presented at the 2023-24 MIT-Royalty Pharma Prize Competition’s recent awards. This year’s top prizes went to researchers and biotech entrepreneurs Anne Carpenter, Frederike Petzschner, and Betar Gallant ’08, SM ’10, PhD ’13.MIT Faculty Founder Initiative Executive Director Kit Hickey MBA ’13 describes the time and hard work the three awardees and other finalists devoted to the initiative and its mission of cultivating female faculty in biotech to cross the chasm between laboratory research and its clinical application.“They have taken the first brave step of getting off the bench when they already work seven days a week. They have carved out time from their facilities, from their labs, from their lives in order to put themselves out there and leap into entrepreneurship,” Hickey says. “They’ve done it because they each want to see their innovations out in the world improving patients’ lives.”Carpenter, senior director of the Imaging Platform at the Broad Institute of MIT and Harvard, where she is also an institute scientist, won the competition’s $250,000 2023-24 MIT-Royalty Pharma Faculty Founder Prize Competition Grand Prize. Carpenter specializes in using microscopy imaging of cells and computational methods such as machine learning to accelerate the identification of chemical compounds with therapeutic potential to, for instance, shrink tumors. The identified compounds are then tested in biological assays that model the tumor ecosystem to see how the compounds would perform on actual tumors.Carpenter’s startup, SyzOnc, launched in April, a feat Carpenter associates with the assistance provided by the MIT Faculty Founder Initiative. Participants in the program receive mentorship, stipends, and advice from industry experts, as well as help with incorporating, assembling a management team, fundraising, and intellectual property strategy.“The program offered key insights and input at major decision points that gave us the momentum to open our doors,” Carpenter says, adding that participating “offered validation of our scientific ideas and business plan. That kind of credibility is really helpful to raising funding, particularly for those starting their first company.”Carpenter says she and her team will employ “the best biological and computational advancements to develop new therapies to fight tumors such as sarcoma, pancreatic cancer, and glioblastoma, which currently have dismal survival rates.”The MIT Faculty Founder Initiative was begun in 2020 by the School of Engineering and the Martin Trust Center for MIT Entrepreneurship, based on research findings by Sangeeta Bhatia, the Wilson Professor of Health Sciences and Technology, professor of electrical engineering and computer science, and faculty director of the MIT Faculty Founder Initiative; Susan Hockfield, MIT Corporation life member, MIT president emerita, and professor of neuroscience; and Nancy Hopkins, professor emerita of biology. An investigation they conducted showed that only about 9 percent of MIT’s 250 biotech startups were started by women, whereas women made up 22 percent of the faculty, as was presented in a 2021 MIT Faculty Newsletter.That data showed that “technologies from female labs were not getting out in the world, resulting in lost potential,” Hickey says.“The MIT Faculty Founder Initiative plays a pivotal role in MIT’s entrepreneurship ecosystem. It elevates visionary faculty working on solutions in biotech by providing them with critical mentorship and resources, ensuring these solutions can be rapidly scaled to market,” says Anantha Chandrakasan, MIT’s chief innovation and strategy officer, dean of engineering, and Vannevar Bush Professor of Electrical Engineering and Computer Science.The MIT Faculty Founder Initiative Prize Competition was launched in 2021. At this year’s competition, the judges represented academia, health care, biotech, and financial investment. In addition to awarding a grand prize, the competition also distributed two $100,000 prizes, one to a researcher from Brown University, the first university to collaborate with MIT in the entrepreneurship program.This year’s winner of the $100,000 2023-24 MIT-Royalty Pharma Faculty Founder Prize Competition Runner-Up Prize was Frederike Petzschner, assistant professor at the Carney Institute for Brain Science at Brown, for her SOMA startup’s digital pain management system, which helps sufferers to manage and relieve chronic pain.“We leverage cutting-edge technology to provide precision care, focusing specifically on personalized cognitive interventions tailored to each patient’s unique needs,” she says.With her startup on the verge of incorporating, Petzschner says, “without the Faculty Finder Initiative, our startup would still be pursuing commercialization, but undoubtedly at a much earlier and perhaps less structured stage.”“The constant support from the program organizers and our mentors was truly transformative,” she says.Gallant, associate professor of mechanical engineering at MIT and winner of the $100,000 2023-24 MIT-Royalty Pharma Faculty Founder Prize Competition Breakthrough Prize, is leading the startup Halogen. An expert on advanced battery technologies, Gallant and her team have developed high-density battery storage to improve the lifetime and performance of such medical devices as pacemakers.“If you can extend lifetime, you’re talking about longer times between invasive replacement surgeries, which really affects patient quality of life,” Gallant told MIT News in a 2022 interview.Jim Reddoch, executive vice president and chief scientific officer of sponsor Royalty Pharma, emphasized his company’s support for both the competition and the MIT Faculty Finder Initiative program.“Royalty Pharma is thrilled to support the 2023-2024 MIT-Royalty Pharma Prize Competition and accelerate life sciences innovation at leading research institutions such as MIT and Brown,” Reddoch says. “By supporting the amazing female entrepreneurs in this program, we hope to catalyze more ideas from the lab to biotech companies and eventually into the hands of patients.”Bhatia has referred to the MIT Faculty Founder Initiative as a “playbook” on how to direct female faculty’s high-impact technologies that are not being commercialized into the world of health care.“To me, changing the game means that when you have an invention in your lab, you’re connected enough to the ecosystem to know when it should be a company, and to know who to call and how to get your first investors and how to quickly catalyze your team — and you’re off to the races,” Bhatia says. “Every one one of those inventions can be a medicine as quickly as possible. That’s the future I imagine.”Co-founder Hockfield referred to MIT’s role in promoting entrepreneurship in remarks at the award ceremony, alluding to Brown University’s having joined the effort.“MIT has always been a leader in entrepreneurship,” Hockfield says. “Part of leading is sharing with the world. The collaboration with Brown University for this cohort shows that MIT can share our approach with the world, allowing other universities to follow our model of supporting academic entrepreneurship.”Hickey says that when she and Bhatia asked 30 female faculty members three years ago why they were not commercializing their technologies, many said they had no access to the appropriate networks of mentors, investors, role models, and business partners necessary to begin the journey.“We encourage you to become this network that has been missing,” Hickey told the awards event audience, which included an array of leaders in the biotech world. “Get to know our amazing faculty members and continue to support them. Become a part of this movement.” More

  • in

    Looking forward to forecast the risks of a changing climate

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the third in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    Extreme weather events that were once considered rare have become noticeably less so, from intensifying hurricane activity in the North Atlantic to wildfires generating massive clouds of ozone-damaging smoke. But current climate models are unprepared when it comes to estimating the risk that these increasingly extreme events pose — and without adequate modeling, governments are left unable to take necessary precautions to protect their communities.

    MIT Department of Earth, Atmospheric and Planetary Science (EAPS) Professor Paul O’Gorman researches this trend by studying how climate affects the atmosphere and incorporating what he learns into climate models to improve their accuracy. One particular focus for O’Gorman has been changes in extreme precipitation and midlatitude storms that hit areas like New England.

    “These extreme events are having a lot of impact, but they’re also difficult to model or study,” he says. Seeing the pressing need for better climate models that can be used to develop preparedness plans and climate change mitigation strategies, O’Gorman and collaborators Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in EAPS, and Miho Mazereeuw, associate professor in MIT’s Department of Architecture, are leading an interdisciplinary group of scientists, engineers, and designers to tackle this problem with their MIT Climate Grand Challenges flagship project, “Preparing for a new world of weather and climate extremes.”

    “We know already from observations and from climate model predictions that weather and climate extremes are changing and will change more,” O’Gorman says. “The grand challenge is preparing for those changing extremes.”

    Their proposal is one of five flagship projects recently announced by the MIT Climate Grand Challenges initiative — an Institute-wide effort catalyzing novel research and engineering innovations to address the climate crisis. Selected from a field of almost 100 submissions, the team will receive additional funding and exposure to help accelerate and scale their project goals. Other MIT collaborators on the proposal include researchers from the School of Engineering, the School of Architecture and Planning, the Office of Sustainability, the Center for Global Change Science, and the Institute for Data, Systems and Society.

    Weather risk modeling

    Fifteen years ago, Kerry Emanuel developed a simple hurricane model. It was based on physics equations, rather than statistics, and could run in real time, making it useful for modeling risk assessment. Emanuel wondered if similar models could be used for long-term risk assessment of other things, such as changes in extreme weather because of climate change.

    “I discovered, somewhat to my surprise and dismay, that almost all extant estimates of long-term weather risks in the United States are based not on physical models, but on historical statistics of the hazards,” says Emanuel. “The problem with relying on historical records is that they’re too short; while they can help estimate common events, they don’t contain enough information to make predictions for more rare events.”

    Another limitation of weather risk models which rely heavily on statistics: They have a built-in assumption that the climate is static.

    “Historical records rely on the climate at the time they were recorded; they can’t say anything about how hurricanes grow in a warmer climate,” says Emanuel. The models rely on fixed relationships between events; they assume that hurricane activity will stay the same, even while science is showing that warmer temperatures will most likely push typical hurricane activity beyond the tropics and into a much wider band of latitudes.

    As a flagship project, the goal is to eliminate this reliance on the historical record by emphasizing physical principles (e.g., the laws of thermodynamics and fluid mechanics) in next-generation models. The downside to this is that there are many variables that have to be included. Not only are there planetary-scale systems to consider, such as the global circulation of the atmosphere, but there are also small-scale, extremely localized events, like thunderstorms, that influence predictive outcomes.

    Trying to compute all of these at once is costly and time-consuming — and the results often can’t tell you the risk in a specific location. But there is a way to correct for this: “What’s done is to use a global model, and then use a method called downscaling, which tries to infer what would happen on very small scales that aren’t properly resolved by the global model,” explains O’Gorman. The team hopes to improve downscaling techniques so that they can be used to calculate the risk of very rare but impactful weather events.

    Global climate models, or general circulation models (GCMs), Emanuel explains, are constructed a bit like a jungle gym. Like the playground bars, the Earth is sectioned in an interconnected three-dimensional framework — only it’s divided 100 to 200 square kilometers at a time. Each node comprises a set of computations for characteristics like wind, rainfall, atmospheric pressure, and temperature within its bounds; the outputs of each node are connected to its neighbor. This framework is useful for creating a big picture idea of Earth’s climate system, but if you tried to zoom in on a specific location — like, say, to see what’s happening in Miami or Mumbai — the connecting nodes are too far apart to make predictions on anything specific to those areas.

    Scientists work around this problem by using downscaling. They use the same blueprint of the jungle gym, but within the nodes they weave a mesh of smaller features, incorporating equations for things like topography and vegetation or regional meteorological models to fill in the blanks. By creating a finer mesh over smaller areas they can predict local effects without needing to run the entire global model.

    Of course, even this finer-resolution solution has its trade-offs. While we might be able to gain a clearer picture of what’s happening in a specific region by nesting models within models, it can still make for a computing challenge to crunch all that data at once, with the trade-off being expense and time, or predictions that are limited to shorter windows of duration — where GCMs can be run considering decades or centuries, a particularly complex local model may be restricted to predictions on timescales of just a few years at a time.

    “I’m afraid that most of the downscaling at present is brute force, but I think there’s room to do it in better ways,” says Emanuel, who sees the problem of finding new and novel methods of achieving this goal as an intellectual challenge. “I hope that through the Grand Challenges project we might be able to get students, postdocs, and others interested in doing this in a very creative way.”

    Adapting to weather extremes for cities and renewable energy

    Improving climate modeling is more than a scientific exercise in creativity, however. There’s a very real application for models that can accurately forecast risk in localized regions.

    Another problem is that progress in climate modeling has not kept up with the need for climate mitigation plans, especially in some of the most vulnerable communities around the globe.

    “It is critical for stakeholders to have access to this data for their own decision-making process. Every community is composed of a diverse population with diverse needs, and each locality is affected by extreme weather events in unique ways,” says Mazereeuw, the director of the MIT Urban Risk Lab. 

    A key piece of the team’s project is building on partnerships the Urban Risk Lab has developed with several cities to test their models once they have a usable product up and running. The cities were selected based on their vulnerability to increasing extreme weather events, such as tropical cyclones in Broward County, Florida, and Toa Baja, Puerto Rico, and extratropical storms in Boston, Massachusetts, and Cape Town, South Africa.

    In their proposal, the team outlines a variety of deliverables that the cities can ultimately use in their climate change preparations, with ideas such as online interactive platforms and workshops with stakeholders — such as local governments, developers, nonprofits, and residents — to learn directly what specific tools they need for their local communities. By doing so, they can craft plans addressing different scenarios in their region, involving events such as sea-level rise or heat waves, while also providing information and means of developing adaptation strategies for infrastructure under these conditions that will be the most effective and efficient for them.

    “We are acutely aware of the inequity of resources both in mitigating impacts and recovering from disasters. Working with diverse communities through workshops allows us to engage a lot of people, listen, discuss, and collaboratively design solutions,” says Mazereeuw.

    By the end of five years, the team is hoping that they’ll have better risk assessment and preparedness tool kits, not just for the cities that they’re partnering with, but for others as well.

    “MIT is well-positioned to make progress in this area,” says O’Gorman, “and I think it’s an important problem where we can make a difference.” More

  • in

    Computing our climate future

    On Monday, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the first in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    With improvements to computer processing power and an increased understanding of the physical equations governing the Earth’s climate, scientists are continually working to refine climate models and improve their predictive power. But the tools they’re refining were originally conceived decades ago with only scientists in mind. When it comes to developing tangible climate action plans, these models remain inscrutable to the policymakers, public safety officials, civil engineers, and community organizers who need their predictive insight most.

    “What you end up having is a gap between what’s typically used in practice, and the real cutting-edge science,” says Noelle Selin, a professor in the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences (EAPS), and co-lead with Professor Raffaele Ferrari on the MIT Climate Grand Challenges flagship project “Bringing Computation to the Climate Crisis.” “How can we use new computational techniques, new understandings, new ways of thinking about modeling, to really bridge that gap between state-of-the-art scientific advances and modeling, and people who are actually needing to use these models?”

    Using this as a driving question, the team won’t just be trying to refine current climate models, they’re building a new one from the ground up.

    This kind of game-changing advancement is exactly what the MIT Climate Grand Challenges is looking for, which is why the proposal has been named one of the five flagship projects in the ambitious Institute-wide program aimed at tackling the climate crisis. The proposal, which was selected from 100 submissions and was among 27 finalists, will receive additional funding and support to further their goal of reimagining the climate modeling system. It also brings together contributors from across the Institute, including the MIT Schwarzman College of Computing, the School of Engineering, and the Sloan School of Management.

    When it comes to pursuing high-impact climate solutions that communities around the world can use, “it’s great to do it at MIT,” says Ferrari, EAPS Cecil and Ida Green Professor of Oceanography. “You’re not going to find many places in the world where you have the cutting-edge climate science, the cutting-edge computer science, and the cutting-edge policy science experts that we need to work together.”

    The climate model of the future

    The proposal builds on work that Ferrari began three years ago as part of a joint project with Caltech, the Naval Postgraduate School, and NASA’s Jet Propulsion Lab. Called the Climate Modeling Alliance (CliMA), the consortium of scientists, engineers, and applied mathematicians is constructing a climate model capable of more accurately projecting future changes in critical variables, such as clouds in the atmosphere and turbulence in the ocean, with uncertainties at least half the size of those in existing models.

    To do this, however, requires a new approach. For one thing, current models are too coarse in resolution — at the 100-to-200-kilometer scale — to resolve small-scale processes like cloud cover, rainfall, and sea ice extent. But also, explains Ferrari, part of this limitation in resolution is due to the fundamental architecture of the models themselves. The languages most global climate models are coded in were first created back in the 1960s and ’70s, largely by scientists for scientists. Since then, advances in computing driven by the corporate world and computer gaming have given rise to dynamic new computer languages, powerful graphics processing units, and machine learning.

    For climate models to take full advantage of these advancements, there’s only one option: starting over with a modern, more flexible language. Written in Julia, a part of Julialab’s Scientific Machine Learning technology, and spearheaded by Alan Edelman, a professor of applied mathematics in MIT’s Department of Mathematics, CliMA will be able to harness far more data than the current models can handle.

    “It’s been real fun finally working with people in computer science here at MIT,” Ferrari says. “Before it was impossible, because traditional climate models are in a language their students can’t even read.”

    The result is what’s being called the “Earth digital twin,” a climate model that can simulate global conditions on a large scale. This on its own is an impressive feat, but the team wants to take this a step further with their proposal.

    “We want to take this large-scale model and create what we call an ‘emulator’ that is only predicting a set of variables of interest, but it’s been trained on the large-scale model,” Ferrari explains. Emulators are not new technology, but what is new is that these emulators, being referred to as the “Earth digital cousins,” will take advantage of machine learning.

    “Now we know how to train a model if we have enough data to train them on,” says Ferrari. Machine learning for projects like this has only become possible in recent years as more observational data become available, along with improved computer processing power. The goal is to create smaller, more localized models by training them using the Earth digital twin. Doing so will save time and money, which is key if the digital cousins are going to be usable for stakeholders, like local governments and private-sector developers.

    Adaptable predictions for average stakeholders

    When it comes to setting climate-informed policy, stakeholders need to understand the probability of an outcome within their own regions — in the same way that you would prepare for a hike differently if there’s a 10 percent chance of rain versus a 90 percent chance. The smaller Earth digital cousin models will be able to do things the larger model can’t do, like simulate local regions in real time and provide a wider range of probabilistic scenarios.

    “Right now, if you wanted to use output from a global climate model, you usually would have to use output that’s designed for general use,” says Selin, who is also the director of the MIT Technology and Policy Program. With the project, the team can take end-user needs into account from the very beginning while also incorporating their feedback and suggestions into the models, helping to “democratize the idea of running these climate models,” as she puts it. Doing so means building an interactive interface that eventually will give users the ability to change input values and run the new simulations in real time. The team hopes that, eventually, the Earth digital cousins could run on something as ubiquitous as a smartphone, although developments like that are currently beyond the scope of the project.

    The next thing the team will work on is building connections with stakeholders. Through participation of other MIT groups, such as the Joint Program on the Science and Policy of Global Change and the Climate and Sustainability Consortium, they hope to work closely with policymakers, public safety officials, and urban planners to give them predictive tools tailored to their needs that can provide actionable outputs important for planning. Faced with rising sea levels, for example, coastal cities could better visualize the threat and make informed decisions about infrastructure development and disaster preparedness; communities in drought-prone regions could develop long-term civil planning with an emphasis on water conservation and wildfire resistance.

    “We want to make the modeling and analysis process faster so people can get more direct and useful feedback for near-term decisions,” she says.

    The final piece of the challenge is to incentivize students now so that they can join the project and make a difference. Ferrari has already had luck garnering student interest after co-teaching a class with Edelman and seeing the enthusiasm students have about computer science and climate solutions.

    “We’re intending in this project to build a climate model of the future,” says Selin. “So it seems really appropriate that we would also train the builders of that climate model.” More

  • in

    Ocean vital signs

    Without the ocean, the climate crisis would be even worse than it is. Each year, the ocean absorbs billions of tons of carbon from the atmosphere, preventing warming that greenhouse gas would otherwise cause. Scientists estimate about 25 to 30 percent of all carbon released into the atmosphere by both human and natural sources is absorbed by the ocean.

    “But there’s a lot of uncertainty in that number,” says Ryan Woosley, a marine chemist and a principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) at MIT. Different parts of the ocean take in different amounts of carbon depending on many factors, such as the season and the amount of mixing from storms. Current models of the carbon cycle don’t adequately capture this variation.

    To close the gap, Woosley and a team of other MIT scientists developed a research proposal for the MIT Climate Grand Challenges competition — an Institute-wide campaign to catalyze and fund innovative research addressing the climate crisis. The team’s proposal, “Ocean Vital Signs,” involves sending a fleet of sailing drones to cruise the oceans taking detailed measurements of how much carbon the ocean is really absorbing. Those data would be used to improve the precision of global carbon cycle models and improve researchers’ ability to verify emissions reductions claimed by countries.

    “If we start to enact mitigation strategies—either through removing CO2 from the atmosphere or reducing emissions — we need to know where CO2 is going in order to know how effective they are,” says Woosley. Without more precise models there’s no way to confirm whether observed carbon reductions were thanks to policy and people, or thanks to the ocean.

    “So that’s the trillion-dollar question,” says Woosley. “If countries are spending all this money to reduce emissions, is it enough to matter?”

    In February, the team’s Climate Grand Challenges proposal was named one of 27 finalists out of the almost 100 entries submitted. From among this list of finalists, MIT will announce in April the selection of five flagship projects to receive further funding and support.

    Woosley is leading the team along with Christopher Hill, a principal research engineer in EAPS. The team includes physical and chemical oceanographers, marine microbiologists, biogeochemists, and experts in computational modeling from across the department, in addition to collaborators from the Media Lab and the departments of Mathematics, Aeronautics and Astronautics, and Electrical Engineering and Computer Science.

    Today, data on the flux of carbon dioxide between the air and the oceans are collected in a piecemeal way. Research ships intermittently cruise out to gather data. Some commercial ships are also fitted with sensors. But these present a limited view of the entire ocean, and include biases. For instance, commercial ships usually avoid storms, which can increase the turnover of water exposed to the atmosphere and cause a substantial increase in the amount of carbon absorbed by the ocean.

    “It’s very difficult for us to get to it and measure that,” says Woosley. “But these drones can.”

    If funded, the team’s project would begin by deploying a few drones in a small area to test the technology. The wind-powered drones — made by a California-based company called Saildrone — would autonomously navigate through an area, collecting data on air-sea carbon dioxide flux continuously with solar-powered sensors. This would then scale up to more than 5,000 drone-days’ worth of observations, spread over five years, and in all five ocean basins.

    Those data would be used to feed neural networks to create more precise maps of how much carbon is absorbed by the oceans, shrinking the uncertainties involved in the models. These models would continue to be verified and improved by new data. “The better the models are, the more we can rely on them,” says Woosley. “But we will always need measurements to verify the models.”

    Improved carbon cycle models are relevant beyond climate warming as well. “CO2 is involved in so much of how the world works,” says Woosley. “We’re made of carbon, and all the other organisms and ecosystems are as well. What does the perturbation to the carbon cycle do to these ecosystems?”

    One of the best understood impacts is ocean acidification. Carbon absorbed by the ocean reacts to form an acid. A more acidic ocean can have dire impacts on marine organisms like coral and oysters, whose calcium carbonate shells and skeletons can dissolve in the lower pH. Since the Industrial Revolution, the ocean has become about 30 percent more acidic on average.

    “So while it’s great for us that the oceans have been taking up the CO2, it’s not great for the oceans,” says Woosley. “Knowing how this uptake affects the health of the ocean is important as well.” More

  • in

    Last-mile routing research challenge awards $175,000 to three winning teams

    Routing is one of the most studied problems in operations research; even small improvements in routing efficiency can save companies money and result in energy savings and reduced environmental impacts. Now, three teams of researchers from universities around the world have received prize money totaling $175,000 for their innovative route optimization models.

    The three teams were the winners of the Amazon Last-Mile Routing Research Challenge, through which the MIT Center for Transportation & Logistics (MIT CTL) and Amazon engaged with a global community of researchers across a range of disciplines, from computer science to business operations to supply chain management, challenging them to build data-driven route optimization models leveraging massive historical route execution data.

    First announced in February, the research challenge attracted more than 2,000 participants from around the world. Two hundred twenty-nine researcher teams formed during the spring to independently develop solutions that incorporated driver know-how into route optimization models with the intent that they would outperform traditional optimization approaches. Out of the 48 teams whose models qualified for the final round of the challenge, three teams’ work stood out above the rest. Amazon provided real operational training data for the models and evaluated submissions, with technical support from MIT CTL scientists.

    In real life, drivers frequently deviate from planned and mathematically optimized route sequences. Drivers carry information about which roads are hard to navigate when traffic is bad, when and where they can easily find parking, which stops can be conveniently served together, and many other factors that existing optimization models simply don’t capture.

    Each model addressed the challenge data in a unique way. The methodological approaches chosen by the participants frequently combined traditional exact and heuristic optimization approaches with nontraditional machine learning methods. On the machine learning side, the most commonly adopted methods were different variants of artificial neural networks, as well as inverse reinforcement learning approaches.

    There were 45 submissions that reached the finalist phase, with team members hailing from 29 countries. Entrants spanned all levels of higher education from final-year undergraduate students to retired faculty. Entries were assessed in a double-blind review process so that the judges would not know what team was attached to each entry.

    The third-place prize of $25,000 was awarded to Okan Arslan and Rasit Abay. Okan is a professor at HEC Montréal, and Rasit is a doctoral student at the University of New South Wales in Australia. The runner-up prize at $50,000 was awarded to MIT’s own Xiaotong Guo, Qingyi Wang, and Baichuan Mo, all doctoral students. The top prize of $100,000 was awarded to Professor William Cook of the University of Waterloo in Canada, Professor Stephan Held of the University of Bonn in Germany, and Professor Emeritus Keld Helsgaun of Roskilde University in Denmark. Congratulations to all winners and contestants were held via webinar on July 30.

    Top-performing teams may be interviewed by Amazon for research roles in the company’s Last Mile organization. MIT CTL will publish and promote short technical papers written by all finalists and might invite top-performing teams to present at MIT. Further, a team led by Matthias Winkenbach, director of the MIT Megacity Logistics Lab, will guest-edit a special issue of Transportation Science, one of the most renowned academic journals in this field, featuring academic papers on topics related to the problem tackled by the research challenge. More