More stories

  • in

    Gaining real-world industry experience through Break Through Tech AI at MIT

    Taking what they learned conceptually about artificial intelligence and machine learning (ML) this year, students from across the Greater Boston area had the opportunity to apply their new skills to real-world industry projects as part of an experiential learning opportunity offered through Break Through Tech AI at MIT.

    Hosted by the MIT Schwarzman College of Computing, Break Through Tech AI is a pilot program that aims to bridge the talent gap for women and underrepresented genders in computing fields by providing skills-based training, industry-relevant portfolios, and mentoring to undergraduate students in regional metropolitan areas in order to position them more competitively for careers in data science, machine learning, and artificial intelligence.

    “Programs like Break Through Tech AI gives us opportunities to connect with other students and other institutions, and allows us to bring MIT’s values of diversity, equity, and inclusion to the learning and application in the spaces that we hold,” says Alana Anderson, assistant dean of diversity, equity, and inclusion for the MIT Schwarzman College of Computing.

    The inaugural cohort of 33 undergraduates from 18 Greater Boston-area schools, including Salem State University, Smith College, and Brandeis University, began the free, 18-month program last summer with an eight-week, online skills-based course to learn the basics of AI and machine learning. Students then split into small groups in the fall to collaborate on six machine learning challenge projects presented to them by MathWorks, MIT-IBM Watson AI Lab, and Replicate. The students dedicated five hours or more each week to meet with their teams, teaching assistants, and project advisors, including convening once a month at MIT, while juggling their regular academic course load with other daily activities and responsibilities.

    The challenges gave the undergraduates the chance to help contribute to actual projects that industry organizations are working on and to put their machine learning skills to the test. Members from each organization also served as project advisors, providing encouragement and guidance to the teams throughout.

    “Students are gaining industry experience by working closely with their project advisors,” says Aude Oliva, director of strategic industry engagement at the MIT Schwarzman College of Computing and the MIT director of the MIT-IBM Watson AI Lab. “These projects will be an add-on to their machine learning portfolio that they can share as a work example when they’re ready to apply for a job in AI.”

    Over the course of 15 weeks, teams delved into large-scale, real-world datasets to train, test, and evaluate machine learning models in a variety of contexts.

    In December, the students celebrated the fruits of their labor at a showcase event held at MIT in which the six teams gave final presentations on their AI projects. The projects not only allowed the students to build up their AI and machine learning experience, it helped to “improve their knowledge base and skills in presenting their work to both technical and nontechnical audiences,” Oliva says.

    For a project on traffic data analysis, students got trained on MATLAB, a programming and numeric computing platform developed by MathWorks, to create a model that enables decision-making in autonomous driving by predicting future vehicle trajectories. “It’s important to realize that AI is not that intelligent. It’s only as smart as you make it and that’s exactly what we tried to do,” said Brandeis University student Srishti Nautiyal as she introduced her team’s project to the audience. With companies already making autonomous vehicles from planes to trucks a reality, Nautiyal, a physics and mathematics major, shared that her team was also highly motivated to consider the ethical issues of the technology in their model for the safety of passengers, drivers, and pedestrians.

    Using census data to train a model can be tricky because they are often messy and full of holes. In a project on algorithmic fairness for the MIT-IBM Watson AI Lab, the hardest task for the team was having to clean up mountains of unorganized data in a way where they could still gain insights from them. The project — which aimed to create demonstration of fairness applied on a real dataset to evaluate and compare effectiveness of different fairness interventions and fair metric learning techniques — could eventually serve as an educational resource for data scientists interested in learning about fairness in AI and using it in their work, as well as to promote the practice of evaluating the ethical implications of machine learning models in industry.

    Other challenge projects included an ML-assisted whiteboard for nontechnical people to interact with ready-made machine learning models, and a sign language recognition model to help disabled people communicate with others. A team that worked on a visual language app set out to include over 50 languages in their model to increase access for the millions of people that are visually impaired throughout the world. According to the team, similar apps on the market currently only offer up to 23 languages. 

    Throughout the semester, students persisted and demonstrated grit in order to cross the finish line on their projects. With the final presentations marking the conclusion of the fall semester, students will return to MIT in the spring to continue their Break Through Tech AI journey to tackle another round of AI projects. This time, the students will work with Google on new machine learning challenges that will enable them to hone their AI skills even further with an eye toward launching a successful career in AI. More

  • in

    Ad hoc committee releases report on remote teaching best practices for on-campus education

    The Ad Hoc Committee on Leveraging Best Practices from Remote Teaching for On-Campus Education has released a report that captures how instructors are weaving lessons learned from remote teaching into in-person classes. Despite the challenges imposed by teaching and learning remotely during the Covid-19 pandemic, the report says, “there were seeds planted then that, we hope, will bear fruit in the coming years.”

    “In the long run, one of the best things about having lived through our remote learning experience may be the intense and broad focus on pedagogy that it necessitated,” the report continues. “In a moment when nobody could just teach the way they had always done before, all of us had to go back to first principles and ask ourselves: What are our learning goals for our students? How can we best help them to achieve these goals?”

    The committee’s work is a direct response to one of the Refinement and Implementation Committees (RIC) formed as part of Task Force 2021 and Beyond. Led by co-chairs Krishna Rajagopal, the William A. M. Burden Professor of Physics, and Janet Rankin, director of the MIT Teaching + Learning Lab, the committee engaged with faculty and instructional staff, associate department heads, and undergraduate and graduate officers across MIT.

    The findings are distilled into four broad themes:

    Community, Well-being, and Belonging. Conversations revealed new ways that instructors cultivated these key interrelated concepts, all of which are fundamental to student learning and success. Many instructors focused more on supporting well-being and building community and belonging during the height of the pandemic precisely because the MIT community, and everyone in it, was under such great stress. Some of the resulting practices are continuing, the committee found. Examples include introducing simple gestures, such as start-of-class welcoming practices, and providing extensions and greater flexibility on student assignments. Also, many across MIT felt that the week-long Thanksgiving break offered in 2020 should become a permanent fixture in the academic calendar, because it enhances the well-being of both students and instructors at a time in the fall semester when everyone’s batteries need recharging. 
    Enhancing Engagement. The committee found a variety of practices that have enhanced engagement between students and instructors; among students; and among instructors. For example, many instructors have continued to offer some office hours on Zoom, which seems to reduce barriers to participation for many students, while offering in-person office hours for those who want to take advantage of opportunities for more open-ended conversations. Several departments increased their usage of undergraduate teaching assistants (UTAs) in ways that make students’ learning experience more engaging and give the UTAs a real teaching experience. In addition, many instructors are leveraging out-of-class communication spaces like Slack, Perusall, and Piazza so students can work together, ask questions, and share ideas. 
    Enriching and Augmenting the Learning Environment. The report presents two ways in which instructors have enhanced learning within the classroom: through blended learning and by incorporating authentic experiences. Although blended learning techniques are not new at MIT, after having made it through remote teaching many faculty have found new ways to combine synchronous in-person teaching with asynchronous activities for on-campus students, such as pre-class or pre-lab sequences of videos with exercises interspersed, take-home lab kits, auto-graded online problems that give students immediate feedback, and recorded lab experiences for subsequent review. In addition, instructors found many creative ways to make students’ learning more authentic by going on virtual field trips, using Zoom to bring experts from around the world into MIT classrooms or to enable interactions with students at other universities, and live-streaming experiments that students could not otherwise experience since they cannot be performed in a teaching lab.   
     Assessing Learning. For all its challenges, the report notes, remote teaching prompted instructors to take a step back and think about what they wanted students to learn, how to support it, and how to measure it. The committee found a variety of examples of alternatives to traditional assessments, such as papers or timed, written exams, that instructors tried during the pandemic and are continuing to use. These alternatives include shorter, more frequent, lower-stakes assessments; oral exams or debates; asynchronous, open-book/notes exams; virtual poster sessions; alternate grading schemes; and uploading paper psets and exams into Gradescope to use its logistics and rubrics to improve grading effectiveness and efficiency.
    A large portion of the report is devoted to an extensive, annotated list of best practices from remote instruction that are being used in the classroom. Interestingly, Rankin says, “so many of the strategies and practices developed and used during the pandemic are based on, and supported by, solid educational research.”

    The report concludes with one broad recommendation: that all faculty and instructors read the findings and experiment with some of the best practices in their own instruction. “Our hope is that the practices shared in the report will continue to be adopted, adapted, and expanded by members of the teaching community at MIT, and that instructors’ openness in sharing and learning from each will continue,” Rankin says.

    Two additional, specific recommendations are included in the report. First, the committee endorses the RIC 16 recommendation that a Classroom Advisory Board be created to provide strategic input grounded in evolving pedagogy about future classroom use and technology needs. In its conversations, the committee found a number of ways that remote teaching and learning have impacted students’ and instructors’ perceptions as they have returned to the classroom. For example, during the pandemic students benefited from being able to see everyone else’s faces on Zoom. As a result, some instructors would prefer classrooms that enable students to face each other, such as semi-circular classrooms instead of rectangular ones.

    More generally, the committee concluded, MIT needs classrooms with seats and tables that can be quickly and flexibly reconfigured to facilitate varying pedagogical objectives. The Classroom Advisory Board could also examine classroom technology; this includes the role of videoconferencing to create authentic engagement between MIT students and people far from campus, and blended learning that allows students to experience more of the in-classroom engagement with their peers and instructors from which the “magic of MIT” originates.

    Second, the committee recommends that an implementation group be formed to investigate the possibility of changing the MIT academic calendar to create a one-week break over Thanksgiving. “Finalizing an implementation plan will require careful consideration of various significant logistical challenges,” the report says. “However, the resulting gains to both well-being and learning from this change to the fall calendar make doing so worthwhile.”

    Rankin notes that the report findings dovetail with the recently released MIT Strategic Action Plan for Belonging, Achievement and Composition. “I believe that one of the most important things that became really apparent during remote teaching was that community, inclusion, and belonging really matter and are necessary for both learning and teaching, and that instructors can and should play a central role in creating structures and processes to support them in their classrooms and other learning environments,” she says.

    Rajagopal finds it inspiring that “during a time of intense stress — that nobody ever wants to relive — there was such an intense focus on how we teach and how our students learn that, today, in essentially every direction we look we see colleagues improving on-campus education for tomorrow. I hope that the report will help instructors across the Institute, and perhaps elsewhere, learn from each other. Its readers will see, as our committee did, new ways in which students and instructors are finding those moments, those interactions, where the magic of MIT is created.”

    In addition to the report, the co-chairs recommend two other valuable remote teaching resources: a video interview series, TLL’s Fresh Perspectives, and Open Learning’s collection of examples of how MIT faculty and instructors leveraged digital technology to support and transform teaching and learning during the heart of the pandemic. More

  • in

    Empowering Cambridge youth through data activism

    For over 40 years, the Mayor’s Summer Youth Employment Program (MSYEP, or the Mayor’s Program) in Cambridge, Massachusetts, has been providing teenagers with their first work experience, but 2022 brought a new offering. Collaborating with MIT’s Personal Robots research group (PRG) and Responsible AI for Social Empowerment and Education (RAISE) this summer, MSYEP created a STEAM-focused learning site at the Institute. Eleven students joined the program to learn coding and programming skills through the lens of “Data Activism.”

    MSYEP’s partnership with MIT provides an opportunity for Cambridge high schoolers to gain exposure to more pathways for their future careers and education. The Mayor’s Program aims to respect students’ time and show the value of their work, so participants are compensated with an hourly wage as they learn workforce skills at MSYEP worksites. In conjunction with two ongoing research studies at MIT, PRG and RAISE developed the six-week Data Activism curriculum to equip students with critical-thinking skills so they feel prepared to utilize data science to challenge social injustice and empower their community.

    Rohan Kundargi, K-12 Community Outreach Administrator for MIT Office of Government and Community Relations (OGCR), says, “I see this as a model for a new type of partnership between MIT and Cambridge MSYEP. Specifically, an MIT research project that involves students from Cambridge getting paid to learn, research, and develop their own skills!”

    Cross-Cambridge collaboration

    Cambridge’s Office of Workforce Development initially contacted MIT OGCR about hosting a potential MSYEP worksite that taught Cambridge teens how to code. When Kundargi reached out to MIT pK-12 collaborators, MIT PRG’s graduate research assistant Raechel Walker proposed the Data Activism curriculum. Walker defines “data activism” as utilizing data, computing, and art to analyze how power operates in the world, challenge power, and empathize with people who are oppressed.

    Walker says, “I wanted students to feel empowered to incorporate their own expertise, talents, and interests into every activity. In order for students to fully embrace their academic abilities, they must remain comfortable with bringing their full selves into data activism.”

    As Kundargi and Walker recruited students for the Data Activism learning site, they wanted to make sure the cohort of students — the majority of whom are individuals of color — felt represented at MIT and felt they had the agency for their voice to be heard. “The pioneers in this field are people who look like them,” Walker says, speaking of well-known data activists Timnit Gebru, Rediet Abebe, and Joy Buolamwini.

    When the program began this summer, some of the students were not aware of the ways data science and artificial intelligence exacerbate systemic oppression in society, or some of the tools currently being used to mitigate those societal harms. As a result, Walker says, the students wanted to learn more about discriminatory design in every aspect of life. They were also interested in creating responsible machine learning algorithms and AI fairness metrics.

    A different side of STEAM

    The development and execution of the Data Activism curriculum contributed to Walker’s and postdoc Xiaoxue Du’s respective research at PRG. Walker is studying AI education, specifically creating and teaching data activism curricula for minoritized communities. Du’s research explores processes, assessments, and curriculum design that prepares educators to use, adapt, and integrate AI literacy curricula. Additionally, her research targets how to leverage more opportunities for students with diverse learning needs.

    The Data Activism curriculum utilizes a “libertatory computing” framework, a term Walker coined in her position paper with Professor Cynthia Breazeal, director of MIT RAISE, dean for digital learning, and head of PRG, and Eman Sherif, a then-undergraduate researcher from University of California at San Diego, titled “Liberty Computing for African American Students.” This framework ensures that students, especially minoritized students, acquire a sound racial identity, critical consciousness, collective obligation, liberation centered academic/achievement identity, as well as the activism skills to use computing to transform a multi-layered system of barriers in which racism persists. Walker says, “We encouraged students to demonstrate competency in every pillar because all of the pillars are interconnected and build upon each other.”

    Walker developed a series of interactive coding and project-based activities that focused on understanding systemic racism, utilizing data science to analyze systemic oppression, data drawing, responsible machine learning, how racism can be embedded into AI, and different AI fairness metrics.

    This was the students’ first time learning how to create data visualizations using the programming language Python and the data analysis tool Pandas. In one project meant to examine how different systems of oppression can affect different aspects of students’ own identities, students created datasets with data from their respective intersectional identities. Another activity highlighted African American achievements, where students analyzed two datasets about African American scientists, activists, artists, scholars, and athletes. Using the data visualizations, students then created zines about the African Americans who inspired them.

    RAISE hired Olivia Dias, Sophia Brady, Lina Henriquez, and Zeynep Yalcin through the MIT Undergraduate Research Opportunity Program (UROP) and PRG hired freelancer Matt Taylor to work with Walker on developing the curriculum and designing interdisciplinary experience projects. Walker and the four undergraduate researchers constructed an intersectional data analysis activity about different examples of systemic oppression. PRG also hired three high school students to test activities and offer insights about making the curriculum engaging for program participants. Throughout the program, the Data Activism team taught students in small groups, continually asked students how to improve each activity, and structured each lesson based on the students’ interests. Walker says Dias, Brady, Henriquez, and Yalcin were invaluable to cultivating a supportive classroom environment and helping students complete their projects.

    Cambridge Rindge and Latin School senior Nina works on her rubber block stamp that depicts the importance of representation in media and greater representation in the tech industry.

    Photo: Katherine Ouellette

    Previous item
    Next item

    Student Nina says, “It’s opened my eyes to a different side of STEM. I didn’t know what ‘data’ meant before this program, or how intersectionality can affect AI and data.” Before MSYEP, Nina took Intro to Computer Science and AP Computer Science, but she has been coding since Girls Who Code first sparked her interest in middle school. “The community was really nice. I could talk with other girls. I saw there needs to be more women in STEM, especially in coding.” Now she’s interested in applying to colleges with strong computer science programs so she can pursue a coding-related career.

    From MSYEP to the mayor’s office

    Mayor Sumbul Siddiqui visited the Data Activism learning site on Aug. 9, accompanied by Breazeal. A graduate of MSYEP herself, Siddiqui says, “Through hands-on learning through computer programming, Cambridge high school students have the unique opportunity to see themselves as data scientists. Students were able learn ways to combat discrimination that occurs through artificial intelligence.” In an Instagram post, Siddiqui also said, “I had a blast visiting the students and learning about their projects.”

    Students worked on an activity that asked them to envision how data science might be used to support marginalized communities. They transformed their answers into block-printed T-shirt designs, carving pictures of their hopes into rubber block stamps. Some students focused on the importance of data privacy, like Jacob T., who drew a birdcage to represent data stored and locked away by third party apps. He says, “I want to open that cage and restore my data to myself and see what can be done with it.”

    The subject of Cambridge Community Charter School student Jacob T.’s project was the importance of data privacy. For his T-shirt design, he drew a birdcage to represent data stored and locked away by third party apps. (From right to left:) Breazeal, Jacob T. Kiki, Raechel Walker, and Zeynep Yalcin.

    Photo: Katherine Ouellette

    Previous item
    Next item

    Many students wanted to see more representation in both the media they consume and across various professional fields. Nina talked about the importance of representation in media and how that could contribute to greater representation in the tech industry, while Kiki talked about encouraging more women to pursue STEM fields. Jesmin said, “I wanted to show that data science is accessible to everyone, no matter their origin or language you speak. I wrote ‘hello’ in Bangla, Arabic, and English, because I speak all three languages and they all resonate with me.”

    Student Jesmin (left) explains the concept of her T-shirt design to Mayor Siddiqui. She wants data science to be accessible to everyone, no matter their origin or language, so she drew a globe and wrote ‘hello’ in the three languages she speaks: Bangla, Arabic, and English.

    Photo: Katherine Ouellette

    Previous item
    Next item

    “Overall, I hope the students continue to use their data activism skills to re-envision a society that supports marginalized groups,” says Walker. “Moreover, I hope they are empowered to become data scientists and understand how their race can be a positive part of their identity.” More

  • in

    MIT to launch new Office of Research Computing and Data

    As the computing and data needs of MIT’s research community continue to grow — both in their quantity and complexity — the Institute is launching a new effort to ensure that researchers have access to the advanced computing resources and data management services they need to do their best work. 

    At the core of this effort is the creation of the new Office of Research Computing and Data (ORCD), to be led by Professor Peter Fisher, who will step down as head of the Department of Physics to serve as the office’s inaugural director. The office, which formally opens in September, will build on and replace the MIT Research Computing Project, an initiative supported by the Office of the Vice President for Research, which contributed in recent years to improving the computing resources available to MIT researchers.

    “Almost every scientific field makes use of research computing to carry out our mission at MIT — and computing needs vary between different research groups. In my world, high-energy physics experiments need large amounts of storage and many identical general-purpose CPUs, while astrophysical theorists simulating the formation of galaxy clusters need relatively little storage, but many CPUs with high-speed connections between them,” says Fisher, the Thomas A. Frank (1977) Professor of Physics, who will take up the mantle of ORCD director on Sept. 1.

    “I envision ORCD to be, at a minimum, a centralized system with a spectrum of different capabilities to allow our MIT researchers to start their projects and understand the computational resources needed to execute them,” Fisher adds.

    The Office of Research Computing and Data will provide services spanning hardware, software, and cloud solutions, including data storage and retrieval, and offer advice, training, documentation, and data curation for MIT’s research community. It will also work to develop innovative solutions that address emerging or highly specialized needs, and it will advance strategic collaborations with industry.

    The exceptional performance of MIT’s endowment last year has provided a unique opportunity for MIT to distribute endowment funds to accelerate progress on an array of Institute priorities in fiscal year 2023, beginning July 1, 2022. On the basis of community input and visiting committee feedback, MIT’s leadership identified research computing as one such priority, enabling the expanded effort that the Institute commenced today. Future operation of ORCD will incorporate a cost-recovery model.

    In his new role, Fisher will report to Maria Zuber, MIT’s vice president for research, and coordinate closely with MIT Information Systems and Technology (IS&T), MIT Libraries, and the deans of the five schools and the MIT Schwarzman College of Computing, among others. He will also work closely with Provost Cindy Barnhart.

    “I am thrilled that Peter has agreed to take on this important role,” says Zuber. “Under his leadership, I am confident that we’ll be able to build on the important progress of recent years to deliver to MIT researchers best-in-class infrastructure, services, and expertise so they can maximize the performance of their research.”

    MIT’s research computing capabilities have grown significantly in recent years. Ten years ago, the Institute joined with a number of other Massachusetts universities to establish the Massachusetts Green High-Performance Computing Center (MGHPCC) in Holyoke to provide the high-performance, low-carbon computing power necessary to carry out cutting-edge research while reducing its environmental impact. MIT’s capacity at the MGHPCC is now almost fully utilized, however, and an expansion is underway.

    The need for more advanced computing capacity is not the only issue to be addressed. Over the last decade, there have been considerable advances in cloud computing, which is increasingly used in research computing, requiring the Institute to take a new look at how it works with cloud services providers and then allocates cloud resources to departments, labs, and centers. And MIT’s longstanding model for research computing — which has been mostly decentralized — can lead to inefficiencies and inequities among departments, even as it offers flexibility.

    The Institute has been carefully assessing how to address these issues for several years, including in connection with the establishment of the MIT Schwarzman College of Computing. In August 2019, a college task force on computing infrastructure found a “campus-wide preference for an overarching organizational model of computing infrastructure that transcends a college or school and most logically falls under senior leadership.” The task force’s report also addressed the need for a better balance between centralized and decentralized research computing resources.

    “The needs for computing infrastructure and support vary considerably across disciplines,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “With the new Office of Research Computing and Data, the Institute is seizing the opportunity to transform its approach to supporting research computing and data, including not only hardware and cloud computing but also expertise. This move is a critical step forward in supporting MIT’s research and scholarship.”

    Over time, ORCD (pronounced “orchid”) aims to recruit a staff of professionals, including data scientists and engineers and system and hardware administrators, who will enhance, support, and maintain MIT’s research computing infrastructure, and ensure that all researchers on campus have access to a minimum level of advanced computing and data management.

    The new research computing and data effort is part of a broader push to modernize MIT’s information technology infrastructure and systems. “We are at an inflection point, where we have a significant opportunity to invest in core needs, replace or upgrade aging systems, and respond fully to the changing needs of our faculty, students, and staff,” says Mark Silis, MIT’s vice president for information systems and technology. “We are thrilled to have a new partner in the Office of Research Computing and Data as we embark on this important work.” More

  • in

    Frequent encounters build familiarity

    Do better spatial networks make for better neighbors? There is evidence that they do, according to Paige Bollen, a sixth-year political science graduate student at MIT. The networks Bollen works with are not virtual but physical, part of the built environment in which we are all embedded. Her research on urban spaces suggests that the routes bringing people together or keeping them apart factor significantly in whether individuals see each other as friend or foe.

    “We all live in networks of streets, and come across different types of people,” says Bollen. “Just passing by others provides information that informs our political and social views of the world.” In her doctoral research, Bollen is revealing how physical context matters in determining whether such ordinary encounters engender suspicion or even hostility, while others can lead to cooperation and tolerance.

    Through her in-depth studies mapping the movement of people in urban communities in Ghana and South Africa, Bollen is demonstrating that even in diverse communities, “when people repeatedly come into contact, even if that contact is casual, they can build understanding that can lead to cooperation and positive outcomes,” she says. “My argument is that frequent, casual contact, facilitated by street networks, can make people feel more comfortable with those unlike themselves,” she says.

    Mapping urban networks

    Bollen’s case for the benefits of casual contact emerged from her pursuit of several related questions: Why do people in urban areas who regard other ethnic groups with prejudice and economic envy nevertheless manage to collaborate for a collective good? How do you reduce fears that arise from differences? How do the configuration of space and the built environment influence contact patterns among people?

    While other social science research suggests that there are weak ties in ethnically mixed urban communities, with casual contact exacerbating hostility, Bollen noted that there were plenty of examples of “cooperation across ethnic divisions in ethnically mixed communities.” She absorbed the work of psychologist Stanley Milgram, whose 1972 research showed that strangers seen frequently in certain places become familiar — less anonymous or threatening. So she set out to understand precisely how “the built environment of a neighborhood interacts with its demography to create distinct patterns of contact between social groups.”

    With the support of MIT Global Diversity Lab and MIT GOV/LAB, Bollen set out to develop measures of intergroup contact in cities in Ghana and South Africa. She uses street network data to predict contact patterns based on features of the built environment and then combines these measures with mobility data on peoples’ actual movement.

    “I created a huge dataset for every intersection in these cities, to determine the central nodes where many people are passing through,” she says. She combined these datasets with census data to determine which social groups were most likely to use specific intersections based on their position in a particular street network. She mapped these measures of casual contact to outcomes, such as inter-ethnic cooperation in Ghana and voting behavior in South Africa.

    “My analysis [in Ghana] showed that in areas that are more ethnically heterogeneous and where there are more people passing through intersections, we find more interconnections among people and more cooperation within communities in community development efforts,” she says.

    In a related survey experiment conducted on Facebook with 1,200 subjects, Bollen asked Accra residents if they would help an unknown non-co-ethnic in need with a financial gift. She found that the likelihood of offering such help was strongly linked to the frequency of interactions. “Helping behavior occurred when the subjects believed they would see this person again, even when they did not know the person in need well,” says Bollen. “They figured if they helped, they could count on this person’s reciprocity in the future.”

    For Bollen, this was “a powerful gut check” for her hypothesis that “frequency builds familiarity, because frequency provides information and drives expectations, which means it can reduce uncertainty and fear of the other.”

    In research underway in South Africa, a nation increasingly dealing with anti-immigrant violence, Bollen is investigating whether frequency of contact reduces prejudice against foreigners. Using her detailed street maps, 1.1 billion unique geolocated cellphone pings, and election data, she finds that frequent contact opportunities with immigrants are associated with lower support for anti-immigrant party voting.    Passion for places and spaces

    Bollen never anticipated becoming a political scientist. The daughter of two academics, she was “bent on becoming a data scientist.” But she was also “always interested in why people behave in certain ways and how this influences macro trends.”

    As an undergraduate at Tufts University, she became interested in international affairs. But it was her 2013 fieldwork studying women-only carriages in Delhi, India’s metro system, that proved formative. “I interviewed women for a month, talking to them about how these cars enabled them to participate in public life,” she recalls. Another project involving informal transportation routes in Cape Town, South Africa, immersed her more deeply in the questions of people’s experience of public space. “I left college thinking about mobility and public space, and I discovered how much I love geographic information systems,” she says.

    A gig with the Commonwealth of Massachusetts to improve the 911 emergency service — updating and cleaning geolocations of addresses using Google Street View — further piqued her interest. “The job was tedious, but I realized you can really understand a place, and how people move around, from these images.” Bollen began thinking about a career in urban planning.

    Then a two-year stint as a researcher at MIT GOV/LAB brought Bollen firmly into the political science fold. Working with Lily Tsai, the Ford Professor of Political Science, on civil society partnerships in the developing world, Bollen realized that “political science wasn’t what I thought it was,” she says. “You could bring psychology, economics, and sociology into thinking about politics.” Her decision to join the doctoral program was simple: “I knew and loved the people I was with at MIT.”

    Bollen has not regretted that decision. “All the things I’ve been interested in are finally coming together in my dissertation,” she says. Due to the pandemic, questions involving space, mobility, and contact became sharper to her. “I shifted my research emphasis from asking people about inter-ethnic differences and inequality through surveys, to using contact and context information to measure these variables.”

    She sees a number of applications for her work, including working with civil society organizations in communities touched by ethnic or other frictions “to rethink what we know about contact, challenging some of the classic things we think we know.”

    As she moves into the final phases of her dissertation, which she hopes to publish as a book, Bollen also relishes teaching comparative politics to undergraduates. “There’s something so fun engaging with them, and making their arguments stronger,” she says. With the long process of earning a PhD, this helps her “enjoy what she is doing every single day.” More

  • in

    MIT Schwarzman College of Computing unveils Break Through Tech AI

    Aimed at driving diversity and inclusion in artificial intelligence, the MIT Stephen A. Schwarzman College of Computing is launching Break Through Tech AI, a new program to bridge the talent gap for women and underrepresented genders in AI positions in industry.

    Break Through Tech AI will provide skills-based training, industry-relevant portfolios, and mentoring to qualified undergraduate students in the Greater Boston area in order to position them more competitively for careers in data science, machine learning, and artificial intelligence. The free, 18-month program will also provide each student with a stipend for participation to lower the barrier for those typically unable to engage in an unpaid, extra-curricular educational opportunity.

    “Helping position students from diverse backgrounds to succeed in fields such as data science, machine learning, and artificial intelligence is critical for our society’s future,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “We look forward to working with students from across the Greater Boston area to provide them with skills and mentorship to help them find careers in this competitive and growing industry.”

    The college is collaborating with Break Through Tech — a national initiative launched by Cornell Tech in 2016 to increase the number of women and underrepresented groups graduating with degrees in computing — to host and administer the program locally. In addition to Boston, the inaugural artificial intelligence and machine learning program will be offered in two other metropolitan areas — one based in New York hosted by Cornell Tech and another in Los Angeles hosted by the University of California at Los Angeles Samueli School of Engineering.

    “Break Through Tech’s success at diversifying who is pursuing computer science degrees and careers has transformed lives and the industry,” says Judith Spitz, executive director of Break Through Tech. “With our new collaborators, we can apply our impactful model to drive inclusion and diversity in artificial intelligence.”

    The new program will kick off this summer at MIT with an eight-week, skills-based online course and in-person lab experience that teaches industry-relevant tools to build real-world AI solutions. Students will learn how to analyze datasets and use several common machine learning libraries to build, train, and implement their own ML models in a business context.

    Following the summer course, students will be matched with machine-learning challenge projects for which they will convene monthly at MIT and work in teams to build solutions and collaborate with an industry advisor or mentor throughout the academic year, resulting in a portfolio of resume-quality work. The participants will also be paired with young professionals in the field to help build their network, prepare their portfolio, practice for interviews, and cultivate workplace skills.

    “Leveraging the college’s strong partnership with industry, Break Through AI will offer unique opportunities to students that will enhance their portfolio in machine learning and AI,” says Asu Ozdaglar, deputy dean of academics of the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science. Ozdaglar, who will be the MIT faculty director of Break Through Tech AI, adds: “The college is committed to making computing inclusive and accessible for all. We’re thrilled to host this program at MIT for the Greater Boston area and to do what we can to help increase diversity in computing fields.”

    Break Through Tech AI is part of the MIT Schwarzman College of Computing’s focus to advance diversity, equity, and inclusion in computing. The college aims to improve and create programs and activities that broaden participation in computing classes and degree programs, increase the diversity of top faculty candidates in computing fields, and ensure that faculty search and graduate admissions processes have diverse slates of candidates and interviews.

    “By engaging in activities like Break Through Tech AI that work to improve the climate for underrepresented groups, we’re taking an important step toward creating more welcoming environments where all members can innovate and thrive,” says Alana Anderson, assistant dean for diversity, equity and inclusion for the Schwarzman College of Computing. More

  • in

    MIT announces five flagship projects in first-ever Climate Grand Challenges competition

    MIT today announced the five flagship projects selected in its first-ever Climate Grand Challenges competition. These multiyear projects will define a dynamic research agenda focused on unraveling some of the toughest unsolved climate problems and bringing high-impact, science-based solutions to the world on an accelerated basis.

    Representing the most promising concepts to emerge from the two-year competition, the five flagship projects will receive additional funding and resources from MIT and others to develop their ideas and swiftly transform them into practical solutions at scale.

    “Climate Grand Challenges represents a whole-of-MIT drive to develop game-changing advances to confront the escalating climate crisis, in time to make a difference,” says MIT President L. Rafael Reif. “We are inspired by the creativity and boldness of the flagship ideas and by their potential to make a significant contribution to the global climate response. But given the planet-wide scale of the challenge, success depends on partnership. We are eager to work with visionary leaders in every sector to accelerate this impact-oriented research, implement serious solutions at scale, and inspire others to join us in confronting this urgent challenge for humankind.”

    Brief descriptions of the five Climate Grand Challenges flagship projects are provided below.

    Bringing Computation to the Climate Challenge

    This project leverages advances in artificial intelligence, machine learning, and data sciences to improve the accuracy of climate models and make them more useful to a variety of stakeholders — from communities to industry. The team is developing a digital twin of the Earth that harnesses more data than ever before to reduce and quantify uncertainties in climate projections.

    Research leads: Raffaele Ferrari, the Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate; and Noelle Eckley Selin, director of the Technology and Policy Program and professor with a joint appointment in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences

    Center for Electrification and Decarbonization of Industry

    This project seeks to reinvent and electrify the processes and materials behind hard-to-decarbonize industries like steel, cement, ammonia, and ethylene production. A new innovation hub will perform targeted fundamental research and engineering with urgency, pushing the technological envelope on electricity-driven chemical transformations.

    Research leads: Yet-Ming Chiang, the Kyocera Professor of Materials Science and Engineering, and Bilge Yıldız, the Breene M. Kerr Professor in the Department of Nuclear Science and Engineering and professor in the Department of Materials Science and Engineering

    Preparing for a new world of weather and climate extremes

    This project addresses key gaps in knowledge about intensifying extreme events such as floods, hurricanes, and heat waves, and quantifies their long-term risk in a changing climate. The team is developing a scalable climate-change adaptation toolkit to help vulnerable communities and low-carbon energy providers prepare for these extreme weather events.

    Research leads: Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in the Department of Earth, Atmospheric and Planetary Sciences and co-director of the MIT Lorenz Center; Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab; and Paul O’Gorman, professor in the Program in Atmospheres, Oceans, and Climate in the Department of Earth, Atmospheric and Planetary Sciences

    The Climate Resilience Early Warning System

    The CREWSnet project seeks to reinvent climate change adaptation with a novel forecasting system that empowers underserved communities to interpret local climate risk, proactively plan for their futures incorporating resilience strategies, and minimize losses. CREWSnet will initially be demonstrated in southwestern Bangladesh, serving as a model for similarly threatened regions around the world.

    Research leads: John Aldridge, assistant leader of the Humanitarian Assistance and Disaster Relief Systems Group at MIT Lincoln Laboratory, and Elfatih Eltahir, the H.M. King Bhumibol Professor of Hydrology and Climate in the Department of Civil and Environmental Engineering

    Revolutionizing agriculture with low-emissions, resilient crops

    This project works to revolutionize the agricultural sector with climate-resilient crops and fertilizers that have the ability to dramatically reduce greenhouse gas emissions from food production.

    Research lead: Christopher Voigt, the Daniel I.C. Wang Professor in the Department of Biological Engineering

    “As one of the world’s leading institutions of research and innovation, it is incumbent upon MIT to draw on our depth of knowledge, ingenuity, and ambition to tackle the hard climate problems now confronting the world,” says Richard Lester, MIT associate provost for international activities. “Together with collaborators across industry, finance, community, and government, the Climate Grand Challenges teams are looking to develop and implement high-impact, path-breaking climate solutions rapidly and at a grand scale.”

    The initial call for ideas in 2020 yielded nearly 100 letters of interest from almost 400 faculty members and senior researchers, representing 90 percent of MIT departments. After an extensive evaluation, 27 finalist teams received a total of $2.7 million to develop comprehensive research and innovation plans. The projects address four broad research themes:

    To select the winning projects, research plans were reviewed by panels of international experts representing relevant scientific and technical domains as well as experts in processes and policies for innovation and scalability.

    “In response to climate change, the world really needs to do two things quickly: deploy the solutions we already have much more widely, and develop new solutions that are urgently needed to tackle this intensifying threat,” says Maria Zuber, MIT vice president for research. “These five flagship projects exemplify MIT’s strong determination to bring its knowledge and expertise to bear in generating new ideas and solutions that will help solve the climate problem.”

    “The Climate Grand Challenges flagship projects set a new standard for inclusive climate solutions that can be adapted and implemented across the globe,” says MIT Chancellor Melissa Nobles. “This competition propels the entire MIT research community — faculty, students, postdocs, and staff — to act with urgency around a worsening climate crisis, and I look forward to seeing the difference these projects can make.”

    “MIT’s efforts on climate research amid the climate crisis was a primary reason that I chose to attend MIT, and remains a reason that I view the Institute favorably. MIT has a clear opportunity to be a thought leader in the climate space in our own MIT way, which is why CGC fits in so well,” says senior Megan Xu, who served on the Climate Grand Challenges student committee and is studying ways to make the food system more sustainable.

    The Climate Grand Challenges competition is a key initiative of “Fast Forward: MIT’s Climate Action Plan for the Decade,” which the Institute published in May 2021. Fast Forward outlines MIT’s comprehensive plan for helping the world address the climate crisis. It consists of five broad areas of action: sparking innovation, educating future generations, informing and leveraging government action, reducing MIT’s own climate impact, and uniting and coordinating all of MIT’s climate efforts. More

  • in

    Jonathan Schwarz appointed director of MIT Institutional Research

    Former Provost Martin A. Schmidt named Jonathan D. Schwarz as the new director of MIT Institutional Research — a group within the Office of the Provost that provides high-quality data and analysis to the Institute, government entities, news organizations, and the broader community. 

    Over its 35-year history, Institutional Research has provided consistent, verifiable, and high-quality data. The group was established in 1986 as part of the MIT Office of Campus Planning to support MIT’s academic budget process and space planning studies. The Institute established the group to provide a central source of dependable data for departments, units, research labs, and administrators. 

    Institutional Research conducts campus-wide surveys on topics that affect the community including commuting, wellness, and diversity and inclusion. Additionally, the group submits data on behalf of MIT to the U.S. Department of Education, the Commonwealth of Massachusetts, the National Science Foundation, and national and international higher education rankings such as U.S. News & World Report. Institutional Research also works with peer institutions, consortia, government agencies, and rankings groups to establish the criteria that define how students, faculty, and research dollars are counted.

    “At its core, Institutional Research is about counting people, money, and space,” says Schwarz. “Once Institutional Research established valid and reliable metrics in these areas, it was able to apply its deep understanding of data and the Institute to a broader range of topics using surveys, interviews, and focus groups. We collect, maintain, analyze, and report data so people can make data-informed decisions.”

    One of the group’s most data-rich surveys launched earlier this month, the 2022 MIT Quality of Life Survey. Administered every two years to the entire MIT community on campus and at Lincoln Laboratory, the Quality of Life Survey gathers information about the workload and well-being of MIT’s community members as well as the general atmosphere and climate at MIT. Findings from previous Institutional Research surveys helped to inspire several campus-wide initiatives, including expanded childcare benefits, protocols for flexible work arrangements, upgrades to commuting services, and measures to address student hunger.

    “Surveys give us an idea of where to shine a flashlight, but they are blunt instruments that don’t tell the whole story,” says Schwarz, who most recently served as associate director of Institutional Research, where he has worked since 2017. “We also need to sit down and talk to people and take a deeper dive to get nuance, rich detail, and context to better understand the data we’re collecting.”

    As associate director, Schwarz led an initiative to integrate qualitative data collection and analysis, and played an active role in work around issues of diversity, equity and inclusion. Schwarz joined MIT as an intern and later served as a researcher in MIT’s Office of Minority Education and Admissions Office. He earned a bachelor’s degree in political science from Wabash College and served as the college’s mascot, Wally Wabash. He also earned a master’s degree in education from the Harvard Graduate School of Education, and a PhD in sociology from the University of Notre Dame.

    Schwarz takes over the post from his mentor and Institutional Research’s founding director Lydia Snover, who is retiring after serving MIT in various roles for more than 50 years. 

    “We are blessed at MIT to have a community with an engineering culture — measuring is what we do,” says Snover. “You can’t fix something if you don’t know what’s wrong.”

    Snover will serve as the senior advisor to the director through 2022. A dedicated and valuable member of the MIT community, she started her career at MIT working in administrative positions in the departments of Psychology (now Brain and Cognitive Sciences) and Nutrition and Food Science/Applied Biological Sciences and served as a cook at MIT’s Kappa Sigma fraternity before she officially joined MIT. Snover has a bachelor of arts in philosophy and an MBA from Boston University.

    In her capacity as director of Institutional Research, Snover was awarded the 2019 John Stecklein Distinguished Member Award by the Association for Institutional Research, and the 2007 Lifetime Achievement Award from the Association of American Universities Data Exchange.

    Schwarz began his new role on Jan. 3. More