More stories

  • in

    Transforming the travel experience for the Hong Kong airport

    MIT Hong Kong Innovation Node welcomed 33 students to its flagship program, MIT Entrepreneurship and Maker Skills Integrator (MEMSI). Designed to develop entrepreneurial prowess through exposure to industry-driven challenges, MIT students joined forces with Hong Kong peers in this two-week hybrid bootcamp, developing unique proposals for the Airport Authority of Hong Kong.

    Many airports across the world continue to be affected by the broader impact of Covid-19 with reduced air travel, prompting airlines to cut capacity. The result is a need for new business opportunities to propel economic development. For Hong Kong, the expansion toward non-aeronautical activities to boost regional consumption is therefore crucial, and included as part of the blueprint to transform the city’s airport into an airport city — characterized by capacity expansion, commercial developments, air cargo leadership, an autonomous transport system, connectivity to neighboring cities in mainland China, and evolution into a smart airport guided by sustainable practices. To enhance the customer experience, a key focus is capturing business opportunities at the nexus of digital and physical interactions. 

    These challenges “bring ideas and talent together to tackle real-world problems in the areas of digital service creation for the airport and engaging regional customers to experience the new airport city,” says Charles Sodini, the LeBel Professor of Electrical Engineering at MIT and faculty director at the Node. 

    The new travel standard

    Businesses are exploring new digital technologies, both to drive bookings and to facilitate safe travel. Developments such as Hong Kong airport’s Flight Token, a biometric technology using facial recognition to enable contactless check-ins and boarding at airports, unlock enormous potential that speeds up the departure journey of passengers. Seamless virtual experiences are not going to disappear.

    “What we may see could be a strong rebounce especially for travelers after the travel ban lifts … an opportunity to make travel easier, flying as simple as riding the bus,” says Chris Au Young, general manager of smart airport and general manager of data analytics at the Airport Authority of Hong Kong. 

    The passenger experience of the future will be “enabled by mobile technology, internet of things, and digital platforms,” he explains, adding that in the aviation community, “international organizations have already stipulated that biometric technology will be the new standard for the future … the next question is how this can be connected across airports.”  

    This extends further beyond travel, where Au Young illustrates, “If you go to a concert at Asia World Expo, which is the airport’s new arena in the future, you might just simply show your face rather than queue up in a long line waiting to show your tickets.”

    Accelerating the learning curve with industry support

    Working closely with industry mentors involved in the airport city’s development, students dived deep into discussions on the future of adapted travel, interviewed and surveyed travelers, and plowed through a range of airport data to uncover business insights.

    “With the large amount of data provided, my teammates and I worked hard to identify modeling opportunities that were both theoretically feasible and valuable in a business sense,” says Sean Mann, a junior at MIT studying computer science.

    Mann and his team applied geolocation data to inform machine learning predictions on a passenger’s journey once they enter the airside area. Coupled with biometric technology, passengers can receive personalized recommendations with improved accuracy via the airport’s bespoke passenger app, powered by data collected through thousands of iBeacons dispersed across the vicinity. Armed with these insights, the aim is to enhance the user experience by driving meaningful footfall to retail shops, restaurants, and other airport amenities.

    The support of industry partners inspired his team “with their deep understanding of the aviation industry,” he added. “In a short period of two weeks, we built a proof-of-concept and a rudimentary business plan — the latter of which was very new to me.”

    Collaborating across time zones, Rumen Dangovski, a PhD candidate in electrical engineering and computer science at MIT, joined MEMSI from his home in Bulgaria. For him, learning “how to continually revisit ideas to discover important problems and meaningful solutions for a large and complex real-world system” was a key takeaway. The iterative process helped his team overcome the obstacle of narrowing down the scope of their proposal, with the help of industry mentors and advisors. 

    “Without the feedback from industry partners, we would not have been able to formulate a concrete solution that is actually helpful to the airport,” says Dangovski.  

    Beyond valuable mentorship, he adds, “there was incredible energy in our team, consisting of diverse talent, grit, discipline and organization. I was positively surprised how MEMSI can form quickly and give continual support to our team. The overall experience was very fun.“

    A sustainable future

    Mrigi Munjal, a PhD candidate studying materials science and engineering at MIT, had just taken a long-haul flight from Boston to Delhi prior to the program, and “was beginning to fully appreciate the scale of carbon emissions from aviation.” For her, “that one journey basically overshadowed all of my conscious pro-sustainability lifestyle changes,” she says.

    Knowing that international flights constitute the largest part of an individual’s carbon footprint, Munjal and her team wanted “to make flying more sustainable with an idea that is economically viable for all of the stakeholders involved.” 

    They proposed a carbon offset API that integrates into an airline’s ticket payment system, empowering individuals to take action to offset their carbon footprint, track their personal carbon history, and pick and monitor green projects. The advocacy extends to a digital display of interactive art featured in physical installations across the airport city. The intent is to raise community awareness about one’s impact on the environment and making carbon offsetting accessible. 

    Shaping the travel narrative

    Six teams of students created innovative solutions for the Hong Kong airport which they presented in hybrid format to a panel of judges on Showcase Day. The diverse ideas included an app-based airport retail recommendations supported by iBeacons; a platform that empowers customers to offset their carbon footprint; an app that connects fellow travelers for social and incentive-driven retail experiences; a travel membership exchange platform offering added flexibility to earn and redeem loyalty rewards; an interactive and gamified location-based retail experience using augmented reality; and a digital companion avatar to increase adoption of the airport’s Flight Token and improve airside passenger experience.

    Among the judges was Julian Lee ’97, former president of the MIT Club of Hong Kong and current executive director of finance at the Airport Authority of Hong Kong, who commended the students for demonstrably having “worked very thoroughly and thinking through the specific challenges,” addressing the real pain points that the airport is experiencing.

    “The ideas were very thoughtful and very unique to us. Some of you defined transit passengers as a sub-segment of the market that works. It only happens at the airport and you’ve been able to leverage this transit time in between,” remarked Lee. 

    Strong solutions include an implementation plan to see a path for execution and a viable future. Among the solutions proposed, Au Young was impressed by teams for “paying a lot of attention to the business model … a very important aspect in all the ideas generated.”  

    Addressing the students, Au Young says, “What we love is the way you reinvent the airport business and partnerships, presenting a new way of attracting people to engage more in new services and experiences — not just returning for a flight or just shopping with us, but innovating beyond the airport and using emerging technologies, using location data, using the retailer’s capability and adding some social activities in your solutions.”

    Despite today’s rapidly evolving travel industry, what remains unchanged is a focus on the customer. In the end, “it’s still about the passengers,” added Au Young.  More

  • in

    Unlocking new doors to artificial intelligence

    Artificial intelligence research is constantly developing new hypotheses that have the potential to benefit society and industry; however, sometimes these benefits are not fully realized due to a lack of engineering tools. To help bridge this gap, graduate students in the MIT Department of Electrical Engineering and Computer Science’s 6-A Master of Engineering (MEng) Thesis Program work with some of the most innovative companies in the world and collaborate on cutting-edge projects, while contributing to and completing their MEng thesis.

    During a portion of the last year, four 6-A MEng students teamed up and completed an internship with IBM Research’s advanced prototyping team through the MIT-IBM Watson AI Lab on AI projects, often developing web applications to solve a real-world issue or business use cases. Here, the students worked alongside AI engineers, user experience engineers, full-stack researchers, and generalists to accommodate project requests and receive thesis advice, says Lee Martie, IBM research staff member and 6-A manager. The students’ projects ranged from generating synthetic data to allow for privacy-sensitive data analysis to using computer vision to identify actions in video that allows for monitoring human safety and tracking build progress on a construction site.

    “I appreciated all of the expertise from the team and the feedback,” says 6-A graduate Violetta Jusiega ’21, who participated in the program. “I think that working in industry gives the lens of making sure that the project’s needs are satisfied and [provides the opportunity] to ground research and make sure that it is helpful for some use case in the future.”

    Jusiega’s research intersected the fields of computer vision and design to focus on data visualization and user interfaces for the medical field. Working with IBM, she built an application programming interface (API) that let clinicians interact with a medical treatment strategy AI model, which was deployed in the cloud. Her interface provided a medical decision tree, as well as some prescribed treatment plans. After receiving feedback on her design from physicians at a local hospital, Jusiega developed iterations of the API and how the results where displayed, visually, so that it would be user-friendly and understandable for clinicians, who don’t usually code. She says that, “these tools are often not acquired into the field because they lack some of these API principles which become more important in an industry where everything is already very fast paced, so there’s little time to incorporate a new technology.” But this project might eventually allow for industry deployment. “I think this application has a bunch of potential, whether it does get picked up by clinicians or whether it’s simply used in research. It’s very promising and very exciting to see how technology can help us modify, or I can improve, the health-care field to be even more custom-tailored towards patients and giving them the best care possible,” she says.

    Another 6-A graduate student, Spencer Compton, was also considering aiding professionals to make more informed decisions, for use in settings including health care, but he was tackling it from a causal perspective. When given a set of related variables, Compton was investigating if there was a way to determine not just correlation, but the cause-and-effect relationship between them (the direction of the interaction) from the data alone. For this, he and his collaborators from IBM Research and Purdue University turned to a field of math called information theory. With the goal of designing an algorithm to learn complex networks of causal relationships, Compton used ideas relating to entropy, the randomness in a system, to help determine if a causal relationship is present and how variables might be interacting. “When judging an explanation, people often default to Occam’s razor” says Compton. “We’re more inclined to believe a simpler explanation than a more complex one.” In many cases, he says, it seemed to perform well. For instance, they were able to consider variables such as lung cancer, pollution, and X-ray findings. He was pleased that his research allowed him to help create a framework of “entropic causal inference” that could aid in safe and smart decisions in the future, in a satisfying way. “The math is really surprisingly deep, interesting, and complex,” says Compton. “We’re basically asking, ‘when is the simplest explanation correct?’ but as a math question.”

    Determining relationships within data can sometimes require large volumes of it to suss out patterns, but for data that may contain sensitive information, this may not be available. For her master’s work, Ivy Huang worked with IBM Research to generate synthetic tabular data using a natural language processing tool called a transformer model, which can learn and predict future values from past values. Trained on real data, the model can produce new data with similar patterns, properties, and relationships without restrictions like privacy, availability, and access that might come with real data in financial transactions and electronic medical records. Further, she created an API and deployed the model in an IBM cluster, which allowed users increased access to the model and abilities to query it without compromising the original data.

    Working with the advanced prototyping team, MEng candidate Brandon Perez also considered how to gather and investigate data with restrictions, but in his case it was to use computer vision frameworks, centered on an action recognition model, to identify construction site happenings. The team based their work on the Moments in Time dataset, which contains over a million three-second video clips with about 300 attached classification labels, and has performed well during AI training. However, the group needed more construction-based video data. For this, they used YouTube-8M. Perez built a framework for testing and fine-tuning existing object detection models and action recognition models that could plug into an automatic spatial and temporal localization tool — how they would identify and label particular actions in a video timeline. “I was satisfied that I was able to explore what made me curious, and I was grateful for the autonomy that I was given with this project,” says Perez. “I felt like I was always supported, and my mentor was a great support to the project.”

    “The kind of collaborations that we have seen between our MEng students and IBM researchers are exactly what the 6-A MEng Thesis program at MIT is all about,” says Tomas Palacios, professor of electrical engineering and faculty director of the MIT 6-A MEng Thesis program. “For more than 100 years, 6-A has been connecting MIT students with industry to solve together some of the most important problems in the world.” More

  • in

    Research aims to mitigate chemical and biological airborne threats

    When the air harbors harmful matter, such as a virus or toxic chemical, it’s not always easy to promptly detect this danger. Whether spread maliciously or accidentally, how fast and how far could hazardous plumes travel through a city? What could emergency managers do in response?

    These were questions that scientists, public health officials, and government agencies probed with an air flow study conducted recently in New York City. At 120 locations across all five boroughs of the city, a team led by MIT Lincoln Laboratory collected safe test particles and gases released earlier in subway stations and on streets, tracking their journeys. The exercise measured how far the materials traveled and what their concentrations were when detected.

    The results are expected to improve air dispersion models, and in turn, help emergency planners improve response protocols if a real chemical or biological event were to take place. 

    The study was performed under the Department of Homeland Security (DHS) Science and Technology Directorate’s (S&T) Urban Threat Dispersion Project. The project is largely driven by Lincoln Laboratory’s Counter–Weapons of Mass Destruction (CWMD) Systems Group to improve homeland defenses against airborne threats. This exercise followed a similar, though much smaller, study in 2016 that focused mainly on the subway system within Manhattan.

    “The idea was to look at how particles and gases move through urban environments, starting with a focus on subways,” says Mandeep Virdi, a researcher in the CWMD Systems Group who helped lead both studies.

    The particles and gases used in the study are safe to disperse. The particulates are primarily composed of maltodextrin sugar, and have been used in prior public safety exercises. To enable researchers to track the particles, the particles are modified with small amounts of synthetic DNA that acts as a unique “barcode.” This barcode corresponds to the location from which the particle was released and the day of release. When these particles are later collected and analyzed, researchers can know exactly where they came from.

    The laboratory’s team led the process of releasing the particles and collecting the particle samples for analysis. A small sprayer is used to aerosolize the particles into the air. As the particles flow throughout the city, some get trapped in filters set up at the many dispersed collection sites. 

    To make processes more efficient for this large study, the team built special filter heads that rotated through multiple filters, saving time spent revisiting a collection site. They also developed a system using NFC (near-field communication) tags to simplify the cataloging and tracking of samples and equipment through a mobile app. 

    The researchers are still processing the approximately 5,000 samples that were collected over the five-day measurement campaign. The data will feed into existing particle dispersion models to improve simulations. One of these models, from Argonne National Laboratory, focuses on subway environments, and another model from Los Alamos National Laboratory simulates above-ground city environments, taking into account buildings and urban canyon air flows.

    Together, these models can show how a plume would travel from the subway to the streets, for example. These insights will enable emergency managers in New York City to develop more informed response strategies, as they did following the 2016 subway study.

    “The big question has always been, if there is a release and law enforcement can detect it in time, what do you actually do? Do you shut down the subway system? What can you do to mitigate those effects? Knowing that is the end goal,” Virdi says. 

    A new program, called the Chemical and Biological Defense Testbed, has just kicked off to further investigate those questions. Trina Vian at Lincoln Laboratory is leading this program, also under S&T funding.

    “Now that we’ve learned more about how material transports through the subway system, this test bed is looking at ways that we can mitigate that transport in a low-regret way,” Vian says.

    According to Vian, emergency managers don’t have many options other than to evacuate the area when a biological or chemical sensor is triggered. Yet current sensors tend to have high false-alarm rates, particularly in dirty environments. “You really can’t afford to make that evacuation call in error. Not only do you undermine people’s trust in the system, but also people can become injured, and it may actually be a non-threatening situation.”

    The goal of this test bed is to develop architectures and technologies that could allow for a range of appropriate response activities. For example, the team will be looking at ways through which air flow could be constrained or filtered in place, without disrupting traffic, while responders validate an alarm. They’ll also be testing the performance of new chemical and biological sensor technologies.

    Both Vian and Virdi stress the importance of collaboration for carrying out these large-scale studies, and in tackling the problem of airborne dangers in general. The test bed program is already benefiting by using equipment provided through the CWMD Alliance, a partnership of DHS and the Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense.

    A team of nearly 175 personnel worked together on the air flow exercise, spanning the Metropolitan Transportation Authority, New York City Transit, New York City Police Department, Port Authority of New York and New Jersey, New Jersey Transit, New York City Department of Environmental Protection, the New York City Department of Health and Mental Hygiene, the National Guard Weapons of Mass Destruction Civil Support Teams, the Environmental Protection Agency, and Department of Energy National Laboratories, in addition to S&T and Lincoln Laboratory.

    “It really was all about teamwork,” Virdi reflects. “Programs like this are why I came to Lincoln Laboratory. Seeing how the science is applied in a way that has real actionable results and how appreciative agencies are of what we’re doing has been rewarding. It’s exciting to see your program through, especially one as intense as this.” More

  • in

    Professor Emery Brown has big plans for anesthesiology

    Emery N. Brown — the Edward Hood Taplin Professor of Medical Engineering and of Computational Neuroscience at MIT, an MIT professor of health sciences and technology, an investigator with The Picower Institute for Learning and Memory at MIT, and the Warren M. Zapol Professor of Anaesthesia at Harvard Medical School and Massachusetts General Hospital (MGH) — clearly excels at many roles. Renowned internationally for his anesthesia and neuroscience research, he embodies a unique blend of anesthesiologist, statistician, neuroscientist, educator, and mentor to both students and colleagues. Notably, Brown is one of the most decorated clinician-scientists in the country; he is one of only 25 people — and the first African-American, statistician, and anesthesiologist — to be elected to all three National Academies (Science, Engineering, and Medicine).

    Now, he is handing off one of his many key roles and responsibilities. After almost 10 years, Brown is stepping down as co-director of the Harvard-MIT Program in Health Sciences and Technology (HST). He will turn his energies toward working to develop a new joint center between MIT and MGH that uses the study of anesthesia to design novel approaches to controlling brain states. While a goal of the new center will be to improve anesthesia and intensive care unit management, according to Brown, it will also study related problems such as treating depression, insomnia, and epilepsy, as well as enhancing coma recovery.

    Founded in 1970, HST is one of the oldest interdisciplinary educational programs focused on training the next generation of clinician-scientists and engineers, who learn to translate science, engineering, and medical research into clinical practice, with the aim of improving human health. The MIT Institute for Medical Engineering and Science (IMES), where Brown is associate director, is HST’s home at MIT. Brown was the first HST co-director after the establishment of IMES in 2012; Wolfram Goessling is the Harvard University co-director of HST.

    “Emery has been an exemplary leader for HST during his tenure, and has helped it become a hub for the training of world-class scientists, engineers, and clinicians,” says Anantha Chandrakasan, dean of the MIT School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am deeply grateful for his many years of service and wish him well as he moves on to new endeavors.”

    Elazer R. Edelman, director of IMES, calls Brown “a phenom who has been dedicated to our programs for years.”

    “With his thoughtful leadership and understated style, Emery made many contributions to the HST community,” Edelman continues. “On a personal note, this is bittersweet for me, as Emery has been a partner and mentor in my role as IMES director. And while I know that he will always be there for me, as he has been for all of us at IMES and HST, I will miss our late-night calls and midday conferences on matters of import for MIT, IMES, and HST.”

    Brown says “it was an honor and a privilege to co-direct HST with Wolfram.”

    “The students, staff, and faculty are simply amazing,” Brown continues. “Although, now more than 50 years old, HST remains at the vanguard for training PhD and MD students to work at the intersection between engineering, science, and medicine.”

    Goessling also thanks Brown for his leadership: “I truly valued Emery’s partnership and friendship, working together to deepen ties between the MIT and Harvard sides of HST. I am particularly grateful for working with Emery on our combined diversity efforts, leading to the HST Diversity Ambassadors initiative that made HST a better and stronger program.”

    According to Edelman, Brown was instrumental in the transition to new paradigms and relationships with HMS in the context of IMES. In 2014, he led the establishment of clear criteria for HST faculty membership, thereby strengthening the community of faculty experts who train students and provide research opportunities. More recently, he provided guidance through the turmoil of the ongoing Covid-19 pandemic, including the transition to online instruction and the return to the classroom. And Brown has always been a strong supporter of student diversity efforts, serving as an advocate and advisor to HST students.

    Brown holds BA, MA, and PhD degrees from Harvard University, and an MD from Harvard Medical School. He has been recognized with many awards, including the 2020 Swartz Prize in Theoretical and Computational Neuroscience, the 2018 Dickson Prize in Science, and an NIH Director’s Pioneer Award. Brown also served on President Barack Obama’s BRAIN Initiative Working Group. Among his many accomplishments, he has been cited for developing neural signal processing algorithms to characterize how neural systems represent and transmit information, and for unlocking the neurophysiology of how anesthetics produce the states of general anesthesia.

    Edelman says the process is underway to name a successor to Brown as co-director of HST at MIT. More

  • in

    Community policing in the Global South

    Community policing is meant to combat citizen mistrust of the police force. The concept was developed in the mid-20th century to help officers become part of the communities they are responsible for. The hope was that such presence would create a partnership between citizens and the police force, leading to reduced crime and increased trust. Studies in the 1990s from the United States, United Kingdom, and Australia showed that these goals can be achieved in certain circumstances. Many metropolitan areas in the Global North have since included community policing in their techniques.

    But a recently published study of six different sites in the Global South showed no significant positive effect associated with community policing across a range of countries.

    “We found no reduction in crime or insecurity in these communities, and no increase in trust in the police,” says Fotini Christia, an author of the paper, which was published in Science. Christia is the Ford International Professor in the Social Sciences at MIT and the director of the Sociotechnical Systems Research Center (SSRC) within the Institute for Data, Systems, and Society (IDSS). She was one of three on the steering committee for the research, which also included lead author Graeme Blair at the University of California at Los Angeles and Jeremy Weinstein at Stanford University. Fellow MIT political scientist Lily Tsai was also a co-author on the paper.

    In this study, randomized-control trials of community policing initiatives were implemented at sites in Santa Catarina State, Brazil; Medellín, Colombia; Monrovia, Liberia; Sorsogon Province, Philippines; Ugandan rural areas; and two Punjab Province districts in Pakistan. Each suite of interventions was developed based on the needs of the area but consisted of core elements of community policing such as officer recruitment and training, foot patrols, town hall meetings, and problem-oriented policing. The work was done by a collaboration of several social scientists in the United States and abroad. Major funding for this project was provided by the UK Foreign, Commonwealth and Development Office, awarded through the Evidence in Governance and Politics network.

    The null results were determined after interviewing 18,382 citizens and 874 police officers involved in the experiment over six years.

    The strength of these results lies in the size of the collaboration and the care taken in the research design. Input from researchers representing 22 different departments from universities around the world allowed for a broad diversity of study sites across the Global South. And the study was preregistered to establish a common approach to measurement and indicate exactly which effects the researchers were tracking, to avoid any chance of mining the data to find positive effects.

    “This is a pathbreaking study across a diverse set of sites that provides a new understanding about community policing outside of the Western world” says Christopher Winship, the Diker-Tishman Professor of Sociology at Harvard University, who was not an author on the paper.

    Structural overhaul

    The reasons for the failure of community policing to elicit positive results were as varied as the sites themselves, but an important commonality was difficulties in implementation.

    “We saw three common problems: limited resources, a lack of prioritization of the reform, and rapid rotation of officers,” says Blair. “These challenges lead to weaker implementation of community policing than we’ve seen in ‘success stories’ in the U.S. and may explain why community policing didn’t deliver the same results in these Global South contexts.”

    Citizen attendance at community meetings was variable. And then, resources dedicated to following up on problems identified by citizens were scarce. Police officers in the countries represented in the study are often over-stretched, leaving them unable to adequately follow up on their community policing duties.

    For example, Ugandan police stations averaged one motorbike per whole station, and outposts averaged less than one. At the study sites in Pakistan, fewer than 25 percent of issues that arose in community meetings were followed up on. The police officers tried to push the problems through to other agencies that could assist, but those agencies were also underresourced.            

    There was also significant officer turnover. “In many places, we started with and trained one group of officers and ended with a completely different set of folks,” says Christia.

    In the Philippines, only 25 percent of officers were still in the same post 11 months after the start of the study. Not only is it difficult to train new recruits in the methods of community policing with that rate of turnover, it also makes it extremely difficult to build community respect and familiarity with officers.

    Even in the Global North, the success of community policing can vary. As part of their study, the researchers conducted a review of 43 existing randomized trials conducted since the 1970s to determine the success rate of community policing endeavors already in place.

    They found that in these initiatives, problem-oriented policing reduces crime and likely improves perceptions of safety in a community, but there is mixed-to-negative evidence on the benefits of police presence on crime and perceptions of police. 

    That these initiatives struggle to achieve consistently positive results in countries with better resources indicates there is significant work to be done before success can be achieved in the Global South. Improvements in policing in the Global South may require major structural overhauls of the systems to ensure resource availability, encourage community engagement, and enhance officers’ abilities to follow up on issues of concern.

    “Issues of crime and violence are at the top of the policy agenda in the Global South, and this research demonstrates how universities and government partners can work together to identify the most effective strategies from improving people’s sense of safety,” says Weinstein. “While community policing strategies didn’t deliver the anticipated results on their own, the challenges in implementation point to the need for more systemic reforms that provide the necessary resources and align incentives for police to respond to citizens’ primary concerns.” More

  • in

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity

    MIT and Biogen have announced that they will collaborate with the goal to accelerate the science and action on climate change to improve human health. This collaboration is supported by a three-year, $7 million commitment from the company and the Biogen Foundation. The biotechnology company, headquartered in Cambridge, Massachusetts’ Kendall Square, discovers and develops therapies for people living with serious neurological diseases.

    “We have long believed it is imperative for Biogen to make the fight against climate change central to our long-term corporate responsibility commitments. Through this collaboration with MIT, we aim to identify and share innovative climate solutions that will deliver co-benefits for both health and equity,” says Michel Vounatsos, CEO of Biogen. “We are also proud to support the MIT Museum, which promises to make world-class science and education accessible to all, and honor Biogen co-founder Phillip A. Sharp with a dedication inside the museum that recognizes his contributions to its development.”

    Biogen and the Biogen Foundation are supporting research and programs across a range of areas at MIT.

    Advancing climate, health, and equity

    The first such effort involves new work within the MIT Joint Program on the Science and Policy of Global Change to establish a state-of-the-art integrated model of climate and health aimed at identifying targets that deliver climate and health co-benefits.

    “Evidence suggests that not all climate-related actions deliver equal health benefits, yet policymakers, planners, and stakeholders traditionally lack the tools to consider how decisions in one arena impact the other,” says C. Adam Schlosser, deputy director of the MIT Joint Program. “Biogen’s collaboration with the MIT Joint Program — and its support of a new distinguished Biogen Fellow who will develop the new climate/health model — will accelerate our efforts to provide decision-makers with these tools.”

    Biogen is also supporting the MIT Technology and Policy Program’s Research to Policy Engagement Initiative to infuse human health as a key new consideration in decision-making on the best pathways forward to address the global climate crisis, and bridge the knowledge-to-action gap by connecting policymakers, researchers, and diverse stakeholders. As part of this work, Biogen is underwriting a distinguished Biogen Fellow to advance new research on climate, health, and equity.

    “Our work with Biogen has allowed us to make progress on key questions that matter to human health and well-being under climate change,” says Noelle Eckley Selin, who directs the MIT Technology and Policy Program and is a professor in the MIT Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences. “Further, their support of the Research to Policy Engagement Initiative helps all of our research become more effective in making change.”

    In addition, Biogen has joined 13 other companies in the MIT Climate and Sustainability Consortium (MCSC), which is supporting faculty and student research and developing impact pathways that present a range of actionable steps that companies can take — within and across industries — to advance progress toward climate targets.

    “Biogen joining the MIT Climate and Sustainability Consortium represents our commitment to working with member companies across a diverse range of industries, an approach that aims to drive changes swift and broad enough to match the scale of the climate challenge,” says Jeremy Gregory, executive director of the MCSC. “We are excited to welcome a member from the biotechnology space and look forward to harnessing Biogen’s perspectives as we continue to collaborate and work together with the MIT community in exciting and meaningful ways.”

    Making world-class science and education available to MIT Museum visitors

    Support from Biogen will honor Nobel laureate, MIT Institute professor, and Biogen co-founder Phillip A. Sharp with a named space inside the new Kendall Square location of the MIT Museum, set to open in spring 2022. Biogen also is supporting one of the museum’s opening exhibitions, “Essential MIT,” with a section focused on solving real-world problems such as climate change. It is also providing programmatic support for the museum’s Life Sciences Maker Engagement Program.

    “Phil has provided fantastic support to the MIT Museum for more than a decade as an advisory board member and now as board chair, and he has been deeply involved in plans for the new museum at Kendall Square,” says John Durant, the Mark R. Epstein (Class of 1963) Director of the museum. “Seeing his name on the wall will be a constant reminder of his key role in this development, as well as a mark of our gratitude.”

    Inspiring and empowering the next generation of scientists

    Biogen funding is also being directed to engage the next generation of scientists through support for the Biogen-MIT Biotech in Action: Virtual Lab, a program designed to foster a love of science among diverse and under-served student populations.

    Biogen’s support is part of its Healthy Climate, Healthy Lives initiative, a $250 million, 20-year commitment to eliminate fossil fuels across its operations and collaborate with renowned institutions to advance the science of climate and health and support under-served communities. Additional support is provided by the Biogen Foundation to further its long-standing focus on providing students with equitable access to outstanding science education. More

  • in

    Differences in T cells’ functional states determine resistance to cancer therapy

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer in humans. Some patients with NSCLC receive a therapy called immune checkpoint blockade (ICB) that helps kill cancer cells by reinvigorating a subset of immune cells called T cells, which are “exhausted” and have stopped working. However, only about 35 percent of NSCLC patients respond to ICB therapy. Stefani Spranger’s lab at the MIT Department of Biology explores the mechanisms behind this resistance, with the goal of inspiring new therapies to better treat NSCLC patients. In a new study published on Oct. 29 in Science Immunology, a team led by Spranger lab postdoc Brendan Horton revealed what causes T cells to be non-responsive to ICB — and suggests a possible solution.

    Scientists have long thought that the conditions within a tumor were responsible for determining when T cells stop working and become exhausted after being overstimulated or working for too long to fight a tumor. That’s why physicians prescribe ICB to treat cancer — ICB can invigorate the exhausted T cells within a tumor. However, Horton’s new experiments show that some ICB-resistant T cells stop working before they even enter the tumor. These T cells are not actually exhausted, but rather they become dysfunctional due to changes in gene expression that arise early during the activation of a T cell, which occurs in lymph nodes. Once activated, T cells differentiate into certain functional states, which are distinguishable by their unique gene expression patterns.

    The notion that the dysfunctional state that leads to ICB resistance arises before T cells enter the tumor is quite novel, says Spranger, the Howard S. and Linda B. Stern Career Development Professor, a member of the Koch Institute for Integrative Cancer Research, and the study’s senior author.

    “We show that this state is actually a preset condition, and that the T cells are already non-responsive to therapy before they enter the tumor,” she says. As a result, she explains, ICB therapies that work by reinvigorating exhausted T cells within the tumor are less likely to be effective. This suggests that combining ICB with other forms of immunotherapy that target T cells differently might be a more effective approach to help the immune system combat this subset of lung cancer.

    In order to determine why some tumors are resistant to ICB, Horton and the research team studied T cells in murine models of NSCLC. The researchers sequenced messenger RNA from the responsive and non-responsive T cells in order to identify any differences between the T cells. Supported in part by the Koch Institute Frontier Research Program, they used a technique called Seq-Well, developed in the lab of fellow Koch Institute member J. Christopher Love, the Raymond A. (1921) and Helen E. St. Laurent Professor of Chemical Engineering and a co-author of the study. The technique allows for the rapid gene expression profiling of single cells, which permitted Spranger and Horton to get a very granular look at the gene expression patterns of the T cells they were studying.

    Seq-Well revealed distinct patterns of gene expression between the responsive and non-responsive T cells. These differences, which are determined when the T cells assume their specialized functional states, may be the underlying cause of ICB resistance.

    Now that Horton and his colleagues had a possible explanation for why some T cells did not respond to ICB, they decided to see if they could help the ICB-resistant T cells kill the tumor cells. When analyzing the gene expression patterns of the non-responsive T cells, the researchers had noticed that these T cells had a lower expression of receptors for certain cytokines, small proteins that control immune system activity. To counteract this, the researchers treated lung tumors in murine models with extra cytokines. As a result, the previously non-responsive T cells were then able to fight the tumors — meaning that the cytokine therapy prevented, and potentially even reversed, the dysfunctionality.

    Administering cytokine therapy to human patients is not currently safe, because cytokines can cause serious side effects as well as a reaction called a “cytokine storm,” which can produce severe fevers, inflammation, fatigue, and nausea. However, there are ongoing efforts to figure out how to safely administer cytokines to specific tumors. In the future, Spranger and Horton suspect that cytokine therapy could be used in combination with ICB.

    “This is potentially something that could be translated into a therapeutic that could increase the therapy response rate in non-small cell lung cancer,” Horton says.

    Spranger agrees that this work will help researchers develop more innovative cancer therapies, especially because researchers have historically focused on T cell exhaustion rather than the earlier role that T cell functional states might play in cancer.

    “If T cells are rendered dysfunctional early on, ICB is not going to be effective, and we need to think outside the box,” she says. “There’s more evidence, and other labs are now showing this as well, that the functional state of the T cell actually matters quite substantially in cancer therapies.” To Spranger, this means that cytokine therapy “might be a therapeutic avenue” for NSCLC patients beyond ICB.

    Jeffrey Bluestone, the A.W. and Mary Margaret Clausen Distinguished Professor of Metabolism and Endocrinology at the University of California-San Francisco, who was not involved with the paper, agrees. “The study provides a potential opportunity to ‘rescue’ immunity in the NSCLC non-responder patients with appropriate combination therapies,” he says.

    This research was funded by the Pew-Stewart Scholars for Cancer Research, the Ludwig Center for Molecular Oncology, the Koch Institute Frontier Research Program through the Kathy and Curt Mable Cancer Research Fund, and the National Cancer Institute. More

  • in

    New integrative computational neuroscience center established at MIT’s McGovern Institute

    With the tools of modern neuroscience, researchers can peer into the brain with unprecedented accuracy. Recording devices listen in on the electrical conversations between neurons, picking up the voices of hundreds of cells at a time. Genetic tools allow us to focus on specific types of neurons based on their molecular signatures. Microscopes zoom in to illuminate the brain’s circuitry, capturing thousands of images of elaborately branched dendrites. Functional MRIs detect changes in blood flow to map activity within a person’s brain, generating a complete picture by compiling hundreds of scans.

    This deluge of data provides insights into brain function and dynamics at different levels — molecules, cells, circuits, and behavior — but the insights remain compartmentalized in separate research silos for each level. An innovative new center at MIT’s McGovern Institute for Brain Research aims to leverage them into powerful revelations of the brain’s inner workings.

    The K. Lisa Yang Integrative Computational Neuroscience (ICoN) Center will create advanced mathematical models and computational tools to synthesize the deluge of data across scales and advance our understanding of the brain and mental health.

    The center, funded by a $24 million donation from philanthropist Lisa Yang and led by McGovern Institute Associate Investigator Ila Fiete, will take a collaborative approach to computational neuroscience, integrating cutting-edge modeling techniques and data from MIT labs to explain brain function at every level, from the molecular to the behavioral.

    “Our goal is that sophisticated, truly integrated computational models of the brain will make it possible to identify how ‘control knobs’ such as genes, proteins, chemicals, and environment drive thoughts and behavior, and to make inroads toward urgent unmet needs in understanding and treating brain disorders,” says Fiete, who is also a brain and cognitive sciences professor at MIT.

    “Driven by technologies that generate massive amounts of data, we are entering a new era of translational neuroscience research,” says Yang, whose philanthropic investment in MIT research now exceeds $130 million. “I am confident that the multidisciplinary expertise convened by the ICoN center will revolutionize how we synthesize this data and ultimately understand the brain in health and disease.”

    Connecting the data

    It is impossible to separate the molecules in the brain from their effects on behavior — although those aspects of neuroscience have traditionally been studied independently, by researchers with vastly different expertise. The ICoN Center will eliminate the divides, bringing together neuroscientists and software engineers to deal with all types of data about the brain.

    “The center’s highly collaborative structure, which is essential for unifying multiple levels of understanding, will enable us to recruit talented young scientists eager to revolutionize the field of computational neuroscience,” says Robert Desimone, director of the McGovern Institute. “It is our hope that the ICoN Center’s unique research environment will truly demonstrate a new academic research structure that catalyzes bold, creative research.”

    To foster interdisciplinary collaboration, every postdoc and engineer at the center will work with multiple faculty mentors. In order to attract young scientists and engineers to the field of computational neuroscience, the center will also provide four graduate fellowships to MIT students each year in perpetuity. Interacting closely with three scientific cores, engineers and fellows will develop computational models and technologies for analyzing molecular data, neural circuits, and behavior, such as tools to identify patterns in neural recordings or automate the analysis of human behavior to aid psychiatric diagnoses. These technologies and models will be instrumental in synthesizing data into knowledge and understanding.

    Center priorities

    In its first five years, the ICoN Center will prioritize four areas of investigation: episodic memory and exploration, including functions like navigation and spatial memory; complex or stereotypical behavior, such as the perseverative behaviors associated with autism and obsessive-compulsive disorder; cognition and attention; and sleep. Models of complex behavior will be created in collaboration with clinicians and researchers at Children’s Hospital of Philadelphia.

    The goal, Fiete says, is to model the neuronal interactions that underlie these functions so that researchers can predict what will happen when something changes — when certain neurons become more active or when a genetic mutation is introduced, for example. When paired with experimental data from MIT labs, the center’s models will help explain not just how these circuits work, but also how they are altered by genes, the environment, aging, and disease. These focus areas encompass circuits and behaviors often affected by psychiatric disorders and neurodegeneration, and models will give researchers new opportunities to explore their origins and potential treatment strategies.

    “Lisa Yang is focused on helping the scientific community realize its goals in translational research,” says Nergis Mavalvala, dean of the School of Science and the Curtis and Kathleen Marble Professor of Astrophysics. “With her generous support, we can accelerate the pace of research by connecting the data to the delivery of tangible results.” More