More stories

  • in

    3 Questions: A new PhD program from the Center for Computational Science and Engineering

    This fall, the Center for Computational Science and Engineering (CCSE), an academic unit in the MIT Schwarzman College of Computing, is introducing a new standalone PhD degree program that will enable students to pursue research in cross-cutting methodological aspects of computational science and engineering. The launch follows approval of the center’s degree program proposal at the May 2023 Institute faculty meeting.

    Doctoral-level graduate study in computational science and engineering (CSE) at MIT has, for the past decade, been offered through an interdisciplinary program in which CSE students are admitted to one of eight participating academic departments in the School of Engineering or School of Science. While this model adds a strong disciplinary component to students’ education, the rapid growth of the CSE field and the establishment of the MIT Schwarzman College of Computing have prompted an exciting expansion of MIT’s graduate-level offerings in computation.

    The new degree, offered by the college, will run alongside MIT’s existing interdisciplinary offerings in CSE, complementing these doctoral training programs and preparing students to contribute to the leading edge of the field. Here, CCSE co-directors Youssef Marzouk and Nicolas Hadjiconstantinou discuss the standalone program and how they expect it to elevate the visibility and impact of CSE research and education at MIT.

    Q: What is computational science and engineering?

    Marzouk: Computational science and engineering focuses on the development and analysis of state-of-the-art methods for computation and their innovative application to problems of science and engineering interest. It has intellectual foundations in applied mathematics, statistics, and computer science, and touches the full range of science and engineering disciplines. Yet, it synthesizes these foundations into a discipline of its own — one that links the digital and physical worlds. It’s an exciting and evolving multidisciplinary field.

    Hadjiconstantinou: Examples of CSE research happening at MIT include modeling and simulation techniques, the underlying computational mathematics, and data-driven modeling of physical systems. Computational statistics and scientific machine learning have become prominent threads within CSE, joining high-performance computing, mathematically-oriented programming languages, and their broader links to algorithms and software. Application domains include energy, environment and climate, materials, health, transportation, autonomy, and aerospace, among others. Some of our researchers focus on general and widely applicable methodology, while others choose to focus on methods and algorithms motivated by a specific domain of application.

    Q: What was the motivation behind creating a standalone PhD program?

    Marzouk: The new degree focuses on a particular class of students whose background and interests are primarily in CSE methodology, in a manner that cuts across the disciplinary research structure represented by our current “with-departments” degree program. There is a strong research demand for such methodologically-focused students among CCSE faculty and MIT faculty in general. Our objective is to create a targeted, coherent degree program in this field that, alongside our other thriving CSE offerings, will create the leading environment for top CSE students worldwide.

    Hadjiconstantinou: One of CCSE’s most important functions is to recruit exceptional students who are trained in and want to work in computational science and engineering. Experience with our CSE master’s program suggests that students with a strong background and interests in the discipline prefer to apply to a pure CSE program for their graduate studies. The standalone degree aims to bring these students to MIT and make them available to faculty across the Institute.

    Q: How will this impact computing education and research at MIT? 

    Hadjiconstantinou: We believe that offering a standalone PhD program in CSE alongside the existing “with-departments” programs will significantly strengthen MIT’s graduate programs in computing. In particular, it will strengthen the methodological core of CSE research and education at MIT, while continuing to support the disciplinary-flavored CSE work taking place in our participating departments, which include Aeronautics and Astronautics; Chemical Engineering; Civil and Environmental Engineering; Materials Science and Engineering; Mechanical Engineering; Nuclear Science and Engineering; Earth, Atmospheric and Planetary Sciences; and Mathematics. Together, these programs will create a stronger CSE student cohort and facilitate deeper exchanges between the college and other units at MIT.

    Marzouk: In a broader sense, the new program is designed to help realize one of the key opportunities presented by the college, which is to create a richer variety of graduate degrees in computation and to involve as many faculty and units in these educational endeavors as possible. The standalone CSE PhD will join other distinguished doctoral programs of the college — such as the Department of Electrical Engineering and Computer Science PhD; the Operations Research Center PhD; and the Interdisciplinary Doctoral Program in Statistics and the Social and Engineering Systems PhD within the Institute for Data, Systems, and Society — and grow in a way that is informed by them. The confluence of these academic programs, and natural synergies among them, will make MIT quite unique. More

  • in

    Summer research offers a springboard to advanced studies

    Doctoral studies at MIT aren’t a calling for everyone, but they can be for anyone who has had opportunities to discover that science and technology research is their passion and to build the experience and skills to succeed. For Taylor Baum, Josefina Correa Menéndez, and Karla Alejandra Montejo, three graduate students in just one lab of The Picower Institute for Learning and Memory, a pivotal opportunity came via the MIT Summer Research Program in Biology and Neuroscience (MSRP-Bio). When a student finds MSRP-Bio, it helps them find their future in research. 

    In the program, undergraduate STEM majors from outside MIT spend the summer doing full-time research in the departments of Biology, Brain and Cognitive Sciences (BCS), or the Center for Brains, Minds and Machines (CBMM). They gain lab skills, mentoring, preparation for graduate school, and connections that might last a lifetime. Over the last two decades, a total of 215 students from underrepresented minority groups, who are from economically disadvantaged backgrounds, first-generation or nontraditional college students, or students with disabilities have participated in research in BCS or CBMM labs.  

    Like Baum, Correa Menéndez, and Montejo, the vast majority go on to pursue graduate studies, says Diversity and Outreach Coordinator Mandana Sassanfar, who runs the program. For instance, among 91 students who have worked in Picower Institute labs, 81 have completed their undergraduate studies. Of those, 46 enrolled in PhD programs at MIT or other schools such as Cornell, Yale, Stanford, and Princeton universities, and the University of California System. Another 12 have gone to medical school, another seven are in MD/PhD programs, and three have earned master’s degrees. The rest are studying as post-baccalaureates or went straight into the workforce after earning their bachelor’s degree. 

    After participating in the program, Baum, Correa Menéndez, and Montejo each became graduate students in the research group of Emery N. Brown, the Edward Hood Taplin Professor of Computational Neuroscience and Medical Engineering in The Picower Institute and the Institute for Medical Engineering and Science. The lab combines statistical, computational, and experimental neuroscience methods to study how general anesthesia affects the central nervous system to ultimately improve patient care and advance understanding of the brain. Brown says the students have each been doing “off-the-scale” work, in keeping with the excellence he’s seen from MSRP BIO students over the years. For example, on Aug. 10 Baum and Correa Menéndez were honored with MathWorks Fellowships.

    “I think MSRP is fantastic. Mandana does this amazing job of getting students who are quite talented to come to MIT to realize that they can move their game to the next level. They have the capacity to do it. They just need the opportunities,” Brown says. “These students live up to the expectations that you have of them. And now as graduate students, they’re taking on hard problems and they’re solving them.” 

    Paths to PhD studies 

    Pursuing a PhD is hardly a given. Many young students have never considered graduate school or specific fields of study like neuroscience or electrical engineering. But Sassanfar engages students across the country to introduce them to the opportunity MSRP-Bio provides to gain exposure, experience, and mentoring in advanced fields. Every fall, after the program’s students have returned to their undergraduate institutions, she visits schools in places as far flung as Florida, Maryland, Puerto Rico, and Texas and goes to conferences for diverse science communities such as ABRCMS and SACNAS to spread the word. 

    Taylor Baum

    Photo courtesy of Taylor Baum.

    Previous item
    Next item

    When Baum first connected with the program in 2017, she was finding her way at Penn State University. She had been majoring in biology and music composition but had just switched the latter to engineering following a conversation over coffee exposing her to brain-computer interfacing technology, in which detecting brain signals of people with full-body paralysis could improve their quality of life by enabling control of computers or wheelchairs. Baum became enthusiastic about the potential to build similar systems, but as a new engineering student, she struggled to find summer internships and research opportunities. 

    “I got rejected from every single progam except the MIT Center for Brains, Minds and Machines MSRP,” she recalls with a chuckle. 

    Baum thrived in MSRP-Bio, working in Brown’s lab for three successive summers. At each stage, she said, she gained more research skills, experience, and independence. When she graduated, she was sure she wanted to go to graduate school and applied to four of her dream schools. She accepted MIT’s offer to join the Department of Electrical Engineering and Computer Science, where she is co-advised by faculty members there and by Brown. She is now working to develop a system grounded in cardiovascular physiology that can improve blood pressure management. A tool for practicing anesthesiologists, the system automates the dosing of drugs to maintain a patient’s blood pressure at safe levels in the operating room or intensive care unit. 

    More than that, Baum not only is leading an organization advancing STEM education in Puerto Rico, but also is helping to mentor a current MSRP-Bio student in the Brown lab. 

    “MSRP definitely bonds everyone who has participated in it,” Baum says. “If I see anyone who I know participated in MSRP, we could have an immediate conversation. I know that most of us, if we needed help, we’d feel comfortable asking for help from someone from MSRP. With that shared experience, we have a sense of camaraderie, and community.” 

    In fact, a few years ago when a former MSRP-Bio student named Karla Montejo was applying to MIT, Baum provided essential advice and feedback about the application process, Montejo says. Now, as a graduate student, Montejo has become a mentor for the program in her own right, Sassanfar notes. For instance, Montejo serves on program alumni panels that advise new MSRP-Bio students. 

    Karla Alejandra Montejo

    Photo courtesy of Karla Alejandra Montejo.

    Previous item
    Next item

    Montejo’s family immigrated to Miami from Cuba when she was a child. The magnet high school she attended was so new that students were encouraged to help establish the school’s programs. She forged a path into research. 

    “I didn’t even know what research was,” she says. “I wanted to be a doctor, and I thought maybe it would help me on my resume. I thought it would be kind of like shadowing, but no, it was really different. So I got really captured by research when I was in high school.” 

    Despite continuing to pursue research in college at Florida International University, Montejo didn’t get into graduate school on her first attempt because she hadn’t yet learned how to focus her application. But Sassanfar had visited FIU to recruit students and through that relationship Montejo had already gone through MIT’s related Quantitative Methods Workshop (QMW). So Montejo enrolled in MSRP-Bio, working in the CBMM-affiliated lab of Gabriel Kreiman at Boston Children’s Hospital. 

    “I feel like Mandana really helped me out, gave me a break, and the MSRP experience pretty much solidified that I really wanted to come to MIT,” Montejo says. 

    In the QMW, Montejo learned she really liked computational neuroscience, and in Kreiman’s lab she got to try her hand at computational modeling of the cognition involved in making perceptual sense of complex scenes. Montejo realized she wanted to work on more biologically based neuroscience problems. When the summer ended, because she was off the normal graduate school cycle for now, she found a two-year post-baccalaurate program at Mayo Clinic studying the role a brain cell type called astrocytes might have in the Parkinson’s disease treatment deep brain stimulation. 

    When it came time to reapply to graduate schools (with the help of Baum and others in the BCS Application Assistance Program) Montejo applied to MIT and got in, joining the Brown lab. Now she’s working on modeling the role of  metabolic processes in the changing of brain rhythms under anesthesia, taking advantage of how general anesthesia predictably changes brain states. The effects anesthetic drugs have on cell metabolism and the way that ultimately affects levels of consciousness reveals important aspects of how metabolism affects brain circuits and systems. Earlier this month, for instance, Montejo co-led a paper the lab published in The Proceedings of the National Academy of Sciences detailing the neuroscience of a patient’s transition into an especially deep state of unconsciousness called “burst suppression.” 

    Josefina Correa Menendez

    Photo: David Orenstein

    Previous item
    Next item

    A signature of the Brown lab’s work is rigorous statistical analysis and methods, for instance to discern brain arousal states from EEG measures of brain rhythms. A PhD candidate in MIT’s Interdisciplinary Doctoral Program in Statistics, Correa Menéndez is advancing the use of Bayesian hierarchical models for neural data analysis. These statistical models offer a principled way of pooling information across datasets. One of her models can help scientists better understand the way neurons can “spike” with electrical activity when the brain is presented with a stimulus. The other’s power is in discerning critical features such as arousal states of the brain under general anesthesia from electrophysiological recordings. 

    Though she now works with complex equations and computations as a PhD candidate in neuroscience and statistics, Correa Menéndez was mostly interested in music art as a high school student at Academia María Reina in San Juan and then architecture in college at the University of Puerto Rico at Río Piedras. It was discussions at the intersection of epistemology and art during an art theory class that inspired Correa Menéndez to switch her major to biology and to take computer science classes, too. 

    When Sassanfar visited Puerto Rico in 2017, a computer science professor (Patricia Ordóñez) suggested that Correa Menéndez apply for a chance to attend the QMW. She did, and that led her to also participate in MSRP-Bio in the lab of Sherman Fairchild Professor Matt Wilson (a faculty member in BCS, CBMM, and the Picower Institute). She joined in the lab’s studies of how spatial memories are represented in the hippocampus and how the brain makes use of those memories to help understand the world around it. With mentoring from then-postdoc Carmen Varela (now a faculty member at Florida State University), the experience not only exposed her to neuroscience, but also helped her gain skills and experience with lab experiments, building research tools, and conducting statistical analyses. She ended up working in the Wilson lab as a research scholar for a year and began her graduate studies in September 2018.  

    Classes she took with Brown as a research scholar inspired her to join his lab as a graduate student. 

    “Taking the classes with Emery and also doing experiments made me aware of the role of statistics in the scientific process: from the interpretation of results to the analysis and the design of experiments,” she says. “More often than not, in science, statistics becomes this sort of afterthought — this ‘annoying’ thing that people need to do to get their paper published. But statistics as a field is actually a lot more than that. It’s a way of thinking about data. Particularly, Bayesian modeling provides a principled inference framework for combining prior knowledge into a hypothesis that you can test with data.” 

    To be sure, no one starts out with such inspiration about scientific scholarship, but MSRP-Bio helps students find that passion for research and the paths that opens up.   More

  • in

    Educating national security leaders on artificial intelligence

    Understanding artificial intelligence and how it relates to matters of national security has become a top priority for military and government leaders in recent years. A new three-day custom program entitled “Artificial Intelligence for National Security Leaders” — AI4NSL for short — aims to educate leaders who may not have a technical background on the basics of AI, machine learning, and data science, and how these topics intersect with national security.

    “National security fundamentally is about two things: getting information out of sensors and processing that information. These are two things that AI excels at. The AI4NSL class engages national security leaders in understanding how to navigate the benefits and opportunities that AI affords, while also understanding its potential negative consequences,” says Aleksander Madry, the Cadence Design Systems Professor at MIT and one of the course’s faculty directors.

    Organized jointly by MIT’s School of Engineering, MIT Stephen A. Schwarzman College of Computing, and MIT Sloan Executive Education, AI4NSL wrapped up its fifth cohort in April. The course brings leaders from every branch of the U.S. military, as well as some foreign military leaders from NATO, to MIT’s campus, where they learn from faculty experts on a variety of technical topics in AI, as well as how to navigate organizational challenges that arise in this context.

    Play video

    AI for National Security Leaders | MIT Sloan Executive Education

    “We set out to put together a real executive education class on AI for senior national security leaders,” says Madry. “For three days, we are teaching these leaders not only an understanding of what this technology is about, but also how to best adopt these technologies organizationally.”

    The original idea sprang from discussions with senior U.S. Air Force (USAF) leaders and members of the Department of the Air Force (DAF)-MIT AI Accelerator in 2019.

    According to Major John Radovan, deputy director of the DAF-MIT AI Accelerator, in recent years it has become clear that national security leaders needed a deeper understanding of AI technologies and its implications on security, warfare, and military operations. In February 2020, Radovan and his team at the DAF-MIT AI Accelerator started building a custom course to help guide senior leaders in their discussions about AI.

    “This is the only course out there that is focused on AI specifically for national security,” says Radovan. “We didn’t want to make this course just for members of the Air Force — it had to be for all branches of the military. If we are going to operate as a joint force, we need to have the same vocabulary and the same mental models about how to use this technology.”

    After a pilot program in collaboration with MIT Open Learning and the MIT Computer Science and Artificial Intelligence Laboratory, Radovan connected with faculty at the School of Engineering and MIT Schwarzman College of Computing, including Madry, to refine the course’s curriculum. They enlisted the help of colleagues and faculty at MIT Sloan Executive Education to refine the class’s curriculum and cater the content to its audience. The result of this cross-school collaboration was a new iteration of AI4NSL, which was launched last summer.

    In addition to providing participants with a basic overview of AI technologies, the course places a heavy emphasis on organizational planning and implementation.

    “What we wanted to do was to create smart consumers at the command level. The idea was to present this content at a higher level so that people could understand the key frameworks, which will guide their thinking around the use and adoption of this material,” says Roberto Fernandez, the William F. Pounds Professor of Management and one of the AI4NSL instructors, as well as the other course’s faculty director.

    During the three-day course, instructors from MIT’s Department of Electrical Engineering and Computer Science, Department of Aeronautics and Astronautics, and MIT Sloan School of Management cover a wide range of topics.

    The first half of the course starts with a basic overview of concepts including AI, machine learning, deep learning, and the role of data. Instructors also present the problems and pitfalls of using AI technologies, including the potential for adversarial manipulation of machine learning systems, privacy challenges, and ethical considerations.

    In the middle of day two, the course shifts to examine the organizational perspective, encouraging participants to consider how to effectively implement these technologies in their own units.

    “What’s exciting about this course is the way it is formatted first in terms of understanding AI, machine learning, what data is, and how data feeds AI, and then giving participants a framework to go back to their units and build a strategy to make this work,” says Colonel Michelle Goyette, director of the Army Strategic Education Program at the Army War College and an AI4NSL participant.

    Throughout the course, breakout sessions provide participants with an opportunity to collaborate and problem-solve on an exercise together. These breakout sessions build upon one another as the participants are exposed to new concepts related to AI.

    “The breakout sessions have been distinctive because they force you to establish relationships with people you don’t know, so the networking aspect is key. Any time you can do more than receive information and actually get into the application of what you were taught, that really enhances the learning environment,” says Lieutenant General Brian Robinson, the commander of Air Education and Training Command for the USAF and an AI4NSL participant.

    This spirit of teamwork, collaboration, and bringing together individuals from different backgrounds permeates the three-day program. The AI4NSL classroom not only brings together national security leaders from all branches of the military, it also brings together faculty from three schools across MIT.

    “One of the things that’s most exciting about this program is the kind of overarching theme of collaboration,” says Rob Dietel, director of executive programs at Sloan School of Management. “We’re not drawing just from the MIT Sloan faculty, we’re bringing in top faculty from the Schwarzman College of Computing and the School of Engineering. It’s wonderful to be able to tap into those resources that are here on MIT’s campus to really make it the most impactful program that we can.”

    As new developments in generative AI, such as ChatGPT, and machine learning alter the national security landscape, the organizers at AI4NSL will continue to update the curriculum to ensure it is preparing leaders to understand the implications for their respective units.

    “The rate of change for AI and national security is so fast right now that it’s challenging to keep up, and that’s part of the reason we’ve designed this program. We’ve brought in some of our world-class faculty from different parts of MIT to really address the changing dynamic of AI,” adds Dietel. More

  • in

    Learner in Afghanistan reaches beyond barriers to pursue career in data science

    Tahmina S. was a junior studying computer engineering at a top university in Afghanistan when a new government policy banned women from pursuing education. In August 2021, the Taliban prohibited girls from attending school beyond the sixth grade. While women were initially allowed to continue to attend universities, by October 2021, an order from the Ministry of Higher Education declared that all women in Afghanistan were suspended from attending public and private centers of higher education.

    Determined to continue her studies and pursue her ambitions, Tahmina found the MIT Refugee Action Hub (ReACT) and was accepted to its Certificate in Computer Science and Data Science program in 2022.

    “ReACT helped me realize that I can do big things and be a part of big things,” she says.

    MIT ReACT provides education and professional opportunities to learners from refugee and forcibly displaced communities worldwide. ReACT’s core pillars include academic development, human skills development, employment pathways, and network building. Since 2017, ReACT has offered its Certificate in Computer and Data Science (CDS) program free-of-cost to learners wherever they live. In 2022, ReACT welcomed its largest and most diverse cohort to date — 136 learners from 29 countries — including 25 learners from Afghanistan, more than half of whom are women.

    Tahmina was able to select her classes in the program, and especially valued learning Python — which has led to her studying other programming languages and gaining more skills in data science. She’s continuing to take online courses in hopes of completing her undergraduate degree, and someday pursuing a masters degree in computer science and becoming a data scientist.

    “It’s an important and fun career. I really love data,” she says. “If this is my only time for this experience, I will bring to the table what I have, and do my best.”

    In addition to the education ban, Tahmina also faced the challenge of accessing an internet connection, which is expensive where she lives. But she regularly studies between 12 and 14 hours a day to achieve her dreams.

    The ReACT program offers a blend of asynchronous and synchronous learning. Learners complete a curated series of online, rigorous MIT coursework through MITx with the support of teaching assistants and collaborators, and also participate in a series of interactive online workshops in interpersonal skills that are critical to success in education and careers.

    ReACT learners engage with MIT’s global network of experts including MIT staff, faculty, and alumni — as well as collaborators across technology, humanitarian, and government sectors.

    “I loved that experience a lot, it was a huge achievement. I’m grateful ReACT gave me a chance to be a part of that team of amazing people. I’m amazed I completed that program, because it was really challenging.”

    Theory into practice

    Tahmina was one of 10 students from the ReACT cohort accepted to the highly competitive MIT Innovation Leadership Bootcamp program. She worked on a team of five people who initiated a business proposal and took the project through each phase of the development process. Her team’s project was creating an app for finance management for users aged 23-51 — including all the graphic elements and a final presentation. One valuable aspect of the boot camp, Tahmina says, was presenting their project to real investors who then provided business insights and actionable feedback.

    As part of this ReACT cohort, Tahmina also participated in the Global Apprenticeship Program (GAP) pilot, an initiative led by Talanta and with the participation of MIT Open Learning as curriculum provider. The GAP initiative focuses on improving diverse emerging talent job preparedness and exploring how companies can successfully recruit, onboard, and retain this talent through remote, paid internships. Through the GAP pilot, Tahmina received training in professional skills, resume and interview preparation, and was matched with a financial sector firm for a four-month remote internship in data science.

    To prepare Tahmina and other learners for these professional experiences, ReACT trains its cohorts to work with people who have diverse backgrounds, experiences, and challenges. The nonprofit Na’amal offered workshops covering areas such as problem-solving, innovation and ideation, goal-setting, communication, teamwork, and infrastructure and info security. Tahmina was able to access English classes and learn valuable career skills, such as writing a resume.“This was an amazing part for me. There’s a huge difference going from theoretical to practical,” she says. “Not only do you have to have the theoretical experience, you have to have soft skills. You have to communicate everything you learn to other people, because other people in the business might not have that knowledge, so you have to tell the story in a way that they can understand.”

    ReACT wanted the women in the program to be mentored by women who were not only leaders in the tech field, but working in the same geographic region as learners. At the start of the internship, Na’amal connected Tahmina with a mentor, Maha Gad, who is head of talent development at Talabat and lives in Dubai. Tahmina met with Gad at the beginning and end of each month, giving her the opportunity to ask expansive questions. Tahmina says Gad encouraged her to research and plan first, and then worked with her to explore new tools, like Trello.

    Wanting to put her skills to use locally, Tahmina volunteered at the nonprofit Rumie, a community for Afghan women and girls, working as a learning designer, translator, team leader, and social media manager. She currently volunteers at Correspondents of the World as a story ambassador, helping Afghan people share stories, community, and culture — especially telling the stories of Afghan women and the changes they’ve made in the world.

    “It’s been the most beautiful journey of my life that I will never forget,” says Tahmina. “I found ReACT at a time when I had nothing, and I found the most valuable thing.” More

  • in

    Boosting passenger experience and increasing connectivity at the Hong Kong International Airport

    Recently, a cohort of 36 students from MIT and universities across Hong Kong came together for the MIT Entrepreneurship and Maker Skills Integrator (MEMSI), an intense two-week startup boot camp hosted at the MIT Hong Kong Innovation Node.

    “We’re very excited to be in Hong Kong,” said Professor Charles Sodini, LeBel Professor of Electrical Engineering and faculty director of the Node. “The dream always was to bring MIT and Hong Kong students together.”

    Students collaborated on six teams to meet real-world industry challenges through action learning, defining a problem, designing a solution, and crafting a business plan. The experience culminated in the MEMSI Showcase, where each team presented its process and unique solution to a panel of judges. “The MEMSI program is a great demonstration of important international educational goals for MIT,” says Professor Richard Lester, associate provost for international activities and chair of the Node Steering Committee at MIT. “It creates opportunities for our students to solve problems in a particular and distinctive cultural context, and to learn how innovations can cross international boundaries.” 

    Meeting an urgent challenge in the travel and tourism industry

    The Hong Kong Airport Authority (AAHK) served as the program’s industry partner for the third consecutive year, challenging students to conceive innovative ideas to make passenger travel more personalized from end-to-end while increasing connectivity. As the travel industry resuscitates profitability and welcomes crowds back amidst ongoing delays and labor shortages, the need for a more passenger-centric travel ecosystem is urgent.

    The airport is the third-busiest international passenger airport and the world’s busiest cargo transit. Students experienced an insider’s tour of the Hong Kong International Airport to gain on-the-ground orientation. They observed firsthand the complex logistics, possibilities, and constraints of operating with a team of 78,000 employees who serve 71.5 million passengers with unique needs and itineraries.

    Throughout the program, the cohort was coached and supported by MEMSI alumni, travel industry mentors, and MIT faculty such as Richard de Neufville, professor of engineering systems.

    The mood inside the open-plan MIT Hong Kong Innovation Node was nonstop energetic excitement for the entire program. Each of the six teams was composed of students from MIT and from Hong Kong universities. They learned to work together under time pressure, develop solutions, receive feedback from industry mentors, and iterate around the clock.

    “MEMSI was an enriching and amazing opportunity to learn about entrepreneurship while collaborating with a diverse team to solve a complex problem,” says Maria Li, a junior majoring in computer science, economics, and data science at MIT. “It was incredible to see the ideas we initially came up with as a team turn into a single, thought-out solution by the end.”

    Unsurprisingly given MIT’s focus on piloting the latest technology and the tech-savvy culture of Hong Kong as a global center, many team projects focused on virtual reality, apps, and wearable technology designed to make passengers’ journeys more individualized, efficient, or enjoyable.

    After observing geospatial patterns charting passengers’ movement through an airport, one team realized that many people on long trips aim to meet fitness goals by consciously getting their daily steps power walking the expansive terminals. The team’s prototype, FitAir, is a smart, biometric token integrated virtual coach, which plans walking routes within the airport to promote passenger health and wellness.

    Another team noted a common frustration among frequent travelers who manage multiple mileage rewards program profiles, passwords, and status reports. They proposed AirPoint, a digital wallet that consolidates different rewards programs and presents passengers with all their airport redemption opportunities in one place.

    “Today, there is no loser,” said Vivian Cheung, chief operating officer of AAHK, who served as one of the judges. “Everyone is a winner. I am a winner, too. I have learned a lot from the showcase. Some of the ideas, I believe, can really become a business.”

    Cheung noted that in just 12 days, all teams observed and solved her organization’s pain points and successfully designed solutions to address them.

    More than a competition

    Although many of the models pitched are inventive enough to potentially shape the future of travel, the main focus of MEMSI isn’t to act as yet another startup challenge and incubator.

    “What we’re really focusing on is giving students the ability to learn entrepreneurial thinking,” explains Marina Chan, senior director and head of education at the Node. “It’s the dynamic experience in a highly connected environment that makes being in Hong Kong truly unique. When students can adapt and apply theory to an international context, it builds deeper cultural competency.”

    From an aerial view, the boot camp produced many entrepreneurs in the making and lasting friendships, and respect for other cultural backgrounds and operating environments.

    “I learned the overarching process of how to make a startup pitch, all the way from idea generation, market research, and making business models, to the pitch itself and the presentation,” says Arun Wongprommoon, a senior double majoring in computer science and engineering and linguistics.  “It was all a black box to me before I came into the program.”

    He said he gained tremendous respect for the startup world and the pure hard work and collaboration required to get ahead.

    Spearheaded by the Node, MEMSI is a collaboration among the MIT Innovation Initiative, the Martin Trust Center for Entrepreneurship, the MIT International Science and Technology Initiatives, and Project Manus. Learn more about applying to MEMSI. More

  • in

    Democratizing education: Bringing MIT excellence to the masses

    How do you quantify the value of education or measure success? For the team behind the MIT Institute for Data, Systems, and Society’s (IDSS) MicroMasters Program in Statistics and Data Science (SDS), providing over 1,000 individuals from around the globe with access to MIT-level programming feels like a pretty good place to start. 

    Thanks to the MIT-conceived MicroMasters-style format, SDS faculty director Professor Devavrat Shah and his colleagues have eliminated the physical restrictions created by a traditional brick-and-mortar education, allowing 1,178 learners and counting from 89 countries access to an MIT education.

    “Taking classes from a Nobel Prize winner doesn’t happen every day,” says Oscar Vele, a strategic development worker for the town of Cuenca, Ecuador. “My dream has always been to study at MIT. I knew it was not easy — now, through this program, my dream came true.”

    “With an online forum, in principle, admission is no longer the gate — the merit is a gate,” says Shah. “If you take a class that is MIT-level, and if you perform at MIT-level, then you should get MIT-level credentials.”

    The MM SDS program, delivered in collaboration with MIT Open Learning, plays a key role in the IDSS mission of advancing education in data science, and supports MIT’s overarching belief that everyone should be able to access a quality education no matter what their life circumstances may be.

    “Getting a program like this up and running to the point where it has credentials and credibility across the globe, is an important milestone for us,” says Shah. “Basically, for us, it says we are here to stay, and we are just getting started.”

    Since the program launched in 2018, Shah says he and his team have seen learners from all walks of life, from high-schoolers looking for a challenge to late-in-life learners looking to either evolve or refresh their knowledge.

    “Then there are individuals who want to prove to themselves that they can achieve serious knowledge and build a career,” Shah says. “Circumstances throughout their lives, whether it’s the country or socioeconomic conditions they’re born in, they have never had the opportunity to do something like this, and now they have an MIT-level education and credentials, which is a huge deal for them.”

    Many learners overcome challenges to complete the program, from financial hardships to balancing work, home life, and coursework, and finding private, internet-enabled space for learning — not to mention the added complications of a global pandemic. One Ukrainian learner even finished the program after fleeing her apartment for a bomb shelter.

    Remapping the way to a graduate degree

    For Diogo da Silva Branco Magalhaes, a 44-year-old lifelong learner, curiosity and the desire to evolve within his current profession brought him to the MicroMasters program. Having spent 15 years working in the public transport sector, da Silva Branco Magalhaes had a very specific challenge at the front of his mind: artificial intelligence.

    “It’s not science fiction; it’s already here,” he says. “Think about autonomous vehicles, on-demand transportation, mobility as a service — AI and data, in particular, are the driving force of a number of disruptions that will affect my industry.”

    When he signed up for the MicroMasters Program in Statistics and Data Science, da Silva Branco Magalhaes’ said he had no long-term plans, but was taking a first step. “I just wanted to have a first contact with this reality, understand the basics, and then let’s see how it goes,” he describes.

    Now, after earning his credentials in 2021, he finds himself a few weeks into an accelerated master’s program at Northwestern University, one of several graduate pathways supported by the MM SDS program.

    “I was really looking to gain some basic background knowledge; I didn’t expect the level of quality and depth they were able to provide in an online lecture format,” he says. “Having access to this kind of content — it’s a privilege, and now that we have it, we have to make the most of it.”

    A refreshing investment

    As an applied mathematician with 15 years of experience in the U.S. defense sector, Celia Wilson says she felt comfortable with her knowledge, though not 100 percent confident that her math skills could stand up against the next generation.

    “I felt I was getting left behind,” she says. “So I decided to take some time out and invest in myself, and this program was a great opportunity to systematize and refresh my knowledge of statistics and data science.”

    Since completing the course, Wilson says she has secured a new job as a director of data and analytics, where she is confident in her ability to manage a team of the “new breed of data scientists.” It turns out, however, that completing the program has given her an even greater gift than self-confidence.

    “Most importantly,” she adds, “it’s inspired my daughters to tell anyone who will listen that math is definitely for girls.”

    Connecting an engaged community

    Each course is connected to an online forum that allows learners to enhance their experience through real-time conversations with others in their cohort.

    “We have worked hard to provide a scalable version of the traditional teaching assistant support system that you would get in a usual on-campus class, with a great online forum for people to connect with each other as learners,” Shah says.

    David Khachatrian, a data scientist working on improving the drug discovery pipeline, says that leveraging the community to hone his ability to “think clearly and communicate effectively with others” mattered more than anything.

    “Take the opportunity to engage with your community of fellow learners and facilitators — answer questions for others to give back to the community, solidify your own understanding, and practice your ability to explain clearly,” Khachatrian says. “These skills and behaviors will help you to succeed not just in SDS, but wherever you go in the future.”

    “There were a lot of active contributions from a lot of learners and I felt it was really a very strong component of the course,” da Silva Branco Magalhaes adds. “I had some offline contact with other students who are connections that I’ve kept up with to this day.”

    A solid path forward

    “We have a dedicated team supporting the MM SDS community on the MIT side,” Shah says, citing the contributions of Karene Chu, MM SDS assistant director of education; Susana Kevorkova, the MM SDS program manager; and Jeremy Rossen, MM program coordinator. “They’ve done so much to ensure the success of the program and our learners, and they are constantly adding value to the program — like identifying real-time supplementary opportunities for learners to participate in, including the IDSS Policy Hackathon.”

    The program now holds online “graduation” ceremonies, where credential holders from all over the world share their experiences. Says Shah, who looks forward to celebrating the next 1,000 learners: “Every time I think about it, I feel emotional. It feels great, and it keeps us going.” More

  • in

    Research, education, and connection in the face of war

    When Russian forces invaded Ukraine in February 2022, Tetiana Herasymova had several decisions to make: What should she do, where should she live, and should she take her MITx MicroMasters capstone exams? She had registered for the Statistics and Data Science Program’s final exams just days prior to moving out of her apartment and into a bomb shelter. Although it was difficult to focus on studying and preparations with air horns sounding overhead and uncertainty lingering around her, she was determined to try. “I wouldn’t let the aggressor in the war squash my dreams,” she says.

    A love of research and the desire to improve teaching 

    An early love of solving puzzles and problems for fun piqued Herasymova’s initial interest in mathematics. When she later pursued her PhD in mathematics at Kiev National Taras Shevchenko University, Herasymova’s love of math evolved into a love of research. Throughout Herasymova’s career, she’s worked to close the gap between scientific researchers and educators. Starting as a math tutor at MBA Strategy, a company that prepares Ukrainian leaders for qualifying standardized tests for MBA programs, she was later promoted as the head of their test preparation department. Afterward, she moved on to an equivalent position at ZNOUA, a new project that prepared high school students for Ukraine’s standardized test, and she eventually became ZNOUA’s CEO.

    In 2018, she founded Prosteer, a “self-learning community” of educators who share research, pedagogy, and experience to learn from one another. “It’s really interesting to have a community of teachers from different domains,” she says, speaking of educators and researchers whose specialties range across language, mathematics, physics, music, and more.

    Implementing new pedagogical research in the classroom is often up to educators who seek out studies on an individual basis, Herasymova has found. “Lots of scientists are not practitioners,” she says, and the reverse is also true. She only became more determined to build these connections once she was promoted to head of test preparation at MBA Strategy because she wanted to share more effective pedagogy with the tutors she was mentoring.

    First, Herasymova knew she needed a way to measure the teachers’ effectiveness. She was able to determine whether students who received the company’s tutoring services improved their scores. Moreover, Ukraine keeps an open-access database of national standardized test scores, so anyone could analyze the data in hopes of improving the level of education in the country. She says, “I could do some analytics because I am a mathematician, but I knew I could do much more with this data if I knew data science and machine learning knowledge.”

    That’s why Herasymova sought out the MITx MicroMasters Program in Statistics and Data Science offered by the MIT Institute for Data, Systems, and Society (IDSS). “I wanted to learn the fundamentals so I could join the Learning Analytics domain,” she says. She was looking for a comprehensive program that covered the foundations without being overly basic. “I had some knowledge from the ground, so I could see the deepness of that course,” she says. Because of her background as an instructional designer, she thought the MicroMasters curriculum was well-constructed, calling the variety of videos, practice problems, and homework assignments that encouraged learners to approach the course material in different ways, “a perfect experience.”

    Another benefit of the MicroMasters program was its online format. “I had my usual work, so it was impossible to study in a stationary way,” she says. She found the structure to be more flexible than other programs. “It’s really great that you can construct your course schedule your own way, especially with your own adult life,” she says.

    Determination and support in the midst of war

    When the war first forced Herasymova to flee her apartment, she had already registered to take the exams for her four courses. “It was quite hard to prepare for exams when you could hear explosions outside of the bomb shelter,” she says. She and other Ukranians were invited to postpone their exams until the following session, but the next available testing period wouldn’t be held until October. “It was a hard decision, but I had to allow myself to try,” she says. “For all people in Ukraine, when you don’t know if you’re going to live or die, you try to live in the now. You have to appreciate every moment and what life brings to you. You don’t say, ‘Someday’ — you do it today or tomorrow.”

    In addition to emotional support from her boyfriend, Herasymova had a group of friends who had also enrolled in the program, and they supported each other through study sessions and an ongoing chat. Herasymova’s personal support network helped her accomplish what she set out to do with her MicroMasters program, and in turn, she was able to support her professional network. While Prosteer halted its regular work during the early stages of the war, Herasymova was determined to support the community of educators and scientists that she had built. They continued meeting weekly to exchange ideas as usual. “It’s intrinsic motivation,” she says. They managed to restore all of their activities by October.

    Despite the factors stacked against her, Herasymova’s determination paid off — she passed all of her exams in May, the final step to earning her MicroMasters certificate in statistics and data science. “I just couldn’t believe it,” she says. “It was definitely a bifurcation point. The moment when you realize that you have something to rely on, and that life is just beginning to show all its diversity despite the fact that you live in war.” With her newly minted certificate in hand, Herasymova has continued her research on the effectiveness of educational models — analyzing the data herself — with a summer research program at New York University. 

    The student becomes the master

    After moving seven times between February and October, heading west from Kyiv until most recently settling near the border of Poland, Herasymova hopes she’s moved for the last time. Ukrainian Catholic University offered her a position teaching both mathematics and programming. Before enrolling in the MicroMasters Program in Statistics and Data Science, she had some prior knowledge of programming languages and mathematical algorithms, but she didn’t know Python. She took MITx’s Introduction to Computer Science and Programming Using Python to prepare. “It gave me a huge step forward,” she says. “I learned a lot. Now, not only can I work with Python machine learning models in programming language R, I also have knowledge of the big picture of the purpose and the point to do so.”

    In addition to the skills the MicroMasters Program trained her in, she gained firsthand experience in learning new subjects and exploring topics more deeply. She will be sharing that practice with the community of students and teachers she’s built, plus, she plans on guiding them through this course during the next year. As a continuation of her own educational growth, says she’s looking forward to her next MITx course this year, Data Analysis.

    Herasymova advises that the best way to keep progressing is investing a lot of time. “Adults don’t want to hear this, but you need one or two years,” she says. “Allow yourself to be stupid. If you’re an expert in one domain and want to switch to another, or if you want to understand something new, a lot of people don’t ask questions or don’t ask for help. But from this point, if I don’t know something, I know I should ask for help because that’s the start of learning. With a fixed mindset, you won’t grow.”

    July 2022 MicroMasters Program Joint Completion Celebration. Ukrainian student Tetiana Herasymova, who completed her program amid war in her home country, speaks at 43:55. More

  • in

    Gaining real-world industry experience through Break Through Tech AI at MIT

    Taking what they learned conceptually about artificial intelligence and machine learning (ML) this year, students from across the Greater Boston area had the opportunity to apply their new skills to real-world industry projects as part of an experiential learning opportunity offered through Break Through Tech AI at MIT.

    Hosted by the MIT Schwarzman College of Computing, Break Through Tech AI is a pilot program that aims to bridge the talent gap for women and underrepresented genders in computing fields by providing skills-based training, industry-relevant portfolios, and mentoring to undergraduate students in regional metropolitan areas in order to position them more competitively for careers in data science, machine learning, and artificial intelligence.

    “Programs like Break Through Tech AI gives us opportunities to connect with other students and other institutions, and allows us to bring MIT’s values of diversity, equity, and inclusion to the learning and application in the spaces that we hold,” says Alana Anderson, assistant dean of diversity, equity, and inclusion for the MIT Schwarzman College of Computing.

    The inaugural cohort of 33 undergraduates from 18 Greater Boston-area schools, including Salem State University, Smith College, and Brandeis University, began the free, 18-month program last summer with an eight-week, online skills-based course to learn the basics of AI and machine learning. Students then split into small groups in the fall to collaborate on six machine learning challenge projects presented to them by MathWorks, MIT-IBM Watson AI Lab, and Replicate. The students dedicated five hours or more each week to meet with their teams, teaching assistants, and project advisors, including convening once a month at MIT, while juggling their regular academic course load with other daily activities and responsibilities.

    The challenges gave the undergraduates the chance to help contribute to actual projects that industry organizations are working on and to put their machine learning skills to the test. Members from each organization also served as project advisors, providing encouragement and guidance to the teams throughout.

    “Students are gaining industry experience by working closely with their project advisors,” says Aude Oliva, director of strategic industry engagement at the MIT Schwarzman College of Computing and the MIT director of the MIT-IBM Watson AI Lab. “These projects will be an add-on to their machine learning portfolio that they can share as a work example when they’re ready to apply for a job in AI.”

    Over the course of 15 weeks, teams delved into large-scale, real-world datasets to train, test, and evaluate machine learning models in a variety of contexts.

    In December, the students celebrated the fruits of their labor at a showcase event held at MIT in which the six teams gave final presentations on their AI projects. The projects not only allowed the students to build up their AI and machine learning experience, it helped to “improve their knowledge base and skills in presenting their work to both technical and nontechnical audiences,” Oliva says.

    For a project on traffic data analysis, students got trained on MATLAB, a programming and numeric computing platform developed by MathWorks, to create a model that enables decision-making in autonomous driving by predicting future vehicle trajectories. “It’s important to realize that AI is not that intelligent. It’s only as smart as you make it and that’s exactly what we tried to do,” said Brandeis University student Srishti Nautiyal as she introduced her team’s project to the audience. With companies already making autonomous vehicles from planes to trucks a reality, Nautiyal, a physics and mathematics major, shared that her team was also highly motivated to consider the ethical issues of the technology in their model for the safety of passengers, drivers, and pedestrians.

    Using census data to train a model can be tricky because they are often messy and full of holes. In a project on algorithmic fairness for the MIT-IBM Watson AI Lab, the hardest task for the team was having to clean up mountains of unorganized data in a way where they could still gain insights from them. The project — which aimed to create demonstration of fairness applied on a real dataset to evaluate and compare effectiveness of different fairness interventions and fair metric learning techniques — could eventually serve as an educational resource for data scientists interested in learning about fairness in AI and using it in their work, as well as to promote the practice of evaluating the ethical implications of machine learning models in industry.

    Other challenge projects included an ML-assisted whiteboard for nontechnical people to interact with ready-made machine learning models, and a sign language recognition model to help disabled people communicate with others. A team that worked on a visual language app set out to include over 50 languages in their model to increase access for the millions of people that are visually impaired throughout the world. According to the team, similar apps on the market currently only offer up to 23 languages. 

    Throughout the semester, students persisted and demonstrated grit in order to cross the finish line on their projects. With the final presentations marking the conclusion of the fall semester, students will return to MIT in the spring to continue their Break Through Tech AI journey to tackle another round of AI projects. This time, the students will work with Google on new machine learning challenges that will enable them to hone their AI skills even further with an eye toward launching a successful career in AI. More