More stories

  • in

    An “oracle” for predicting the evolution of gene regulation

    Despite the sheer number of genes that each human cell contains, these so-called “coding” DNA sequences comprise just 1 percent of our entire genome. The remaining 99 percent is made up of “non-coding” DNA — which, unlike coding DNA, does not carry the instructions to build proteins.

    One vital function of this non-coding DNA, also called “regulatory” DNA, is to help turn genes on and off, controlling how much (if any) of a protein is made. Over time, as cells replicate their DNA to grow and divide, mutations often crop up in these non-coding regions — sometimes tweaking their function and changing the way they control gene expression. Many of these mutations are trivial, and some are even beneficial. Occasionally, though, they can be associated with increased risk of common diseases, such as Type 2 diabetes, or more life-threatening ones, including cancer.

    To better understand the repercussions of such mutations, researchers have been hard at work on mathematical maps that allow them to look at an organism’s genome, predict which genes will be expressed, and determine how that expression will affect the organism’s observable traits. These maps, called fitness landscapes, were conceptualized roughly a century ago to understand how genetic makeup influences one common measure of organismal fitness in particular: reproductive success. Early fitness landscapes were very simple, often focusing on a limited number of mutations. Much richer datasets are now available, but researchers still require additional tools to characterize and visualize such complex data. This ability would not only facilitate a better understanding of how individual genes have evolved over time, but would also help to predict what sequence and expression changes might occur in the future.

    In a new study published on March 9 in Nature, a team of scientists has developed a framework for studying the fitness landscapes of regulatory DNA. They created a neural network model that, when trained on hundreds of millions of experimental measurements, was capable of predicting how changes to these non-coding sequences in yeast affected gene expression. They also devised a unique way of representing the landscapes in two dimensions, making it easy to understand the past and forecast the future evolution of non-coding sequences in organisms beyond yeast — and even design custom gene expression patterns for gene therapies and industrial applications.

    “We now have an ‘oracle’ that can be queried to ask: What if we tried all possible mutations of this sequence? Or, what new sequence should we design to give us a desired expression?” says Aviv Regev, a professor of biology at MIT (on leave), core member of the Broad Institute of Harvard and MIT (on leave), head of Genentech Research and Early Development, and the study’s senior author. “Scientists can now use the model for their own evolutionary question or scenario, and for other problems like making sequences that control gene expression in desired ways. I am also excited about the possibilities for machine learning researchers interested in interpretability; they can ask their questions in reverse, to better understand the underlying biology.”

    Prior to this study, many researchers had simply trained their models on known mutations (or slight variations thereof) that exist in nature. However, Regev’s team wanted to go a step further by creating their own unbiased models capable of predicting an organism’s fitness and gene expression based on any possible DNA sequence — even sequences they’d never seen before. This would also enable researchers to use such models to engineer cells for pharmaceutical purposes, including new treatments for cancer and autoimmune disorders.

    To accomplish this goal, Eeshit Dhaval Vaishnav, a graduate student at MIT and co-first author; Carl de Boer, now an assistant professor at the University of British Columbia; and their colleagues created a neural network model to predict gene expression. They trained it on a dataset generated by inserting millions of totally random non-coding DNA sequences into yeast, and observing how each random sequence affected gene expression. They focused on a particular subset of non-coding DNA sequences called promoters, which serve as binding sites for proteins that can switch nearby genes on or off.

    “This work highlights what possibilities open up when we design new kinds of experiments to generate the right data to train models,” Regev says. “In the broader sense, I believe these kinds of approaches will be important for many problems — like understanding genetic variants in regulatory regions that confer disease risk in the human genome, but also for predicting the impact of combinations of mutations, or designing new molecules.”

    Regev, Vaishnav, de Boer, and their coauthors went on to test their model’s predictive abilities in a variety of ways, in order to show how it could help demystify the evolutionary past — and possible future — of certain promoters. “Creating an accurate model was certainly an accomplishment, but, to me, it was really just a starting point,” Vaishnav explains.

    First, to determine whether their model could help with synthetic biology applications like producing antibiotics, enzymes, and food, the researchers practiced using it to design promoters that could generate desired expression levels for any gene of interest. They then scoured other scientific papers to identify fundamental evolutionary questions, in order to see if their model could help answer them. The team even went so far as to feed their model a real-world population dataset from one existing study, which contained genetic information from yeast strains around the world. In doing so, they were able to delineate thousands of years of past selection pressures that sculpted the genomes of today’s yeast.

    But, in order to create a powerful tool that could probe any genome, the researchers knew they’d need to find a way to forecast the evolution of non-coding sequences even without such a comprehensive population dataset. To address this goal, Vaishnav and his colleagues devised a computational technique that allowed them to plot the predictions from their framework onto a two-dimensional graph. This helped them show, in a remarkably simple manner, how any non-coding DNA sequence would affect gene expression and fitness, without needing to conduct any time-consuming experiments at the lab bench.

    “One of the unsolved problems in fitness landscapes was that we didn’t have an approach for visualizing them in a way that meaningfully captured the evolutionary properties of sequences,” Vaishnav explains. “I really wanted to find a way to fill that gap, and contribute to the long-standing vision of creating a complete fitness landscape.”

    Martin Taylor, a professor of genetics at the University of Edinburgh’s Medical Research Council Human Genetics Unit who was not involved in the research, says the study shows that artificial intelligence can not only predict the effect of regulatory DNA changes, but also reveal the underlying principles that govern millions of years of evolution.

    Despite the fact that the model was trained on just a fraction of yeast regulatory DNA in a few growth conditions, he’s impressed that it’s capable of making such useful predictions about the evolution of gene regulation in mammals.

    “There are obvious near-term applications, such as the custom design of regulatory DNA for yeast in brewing, baking, and biotechnology,” he explains. “But extensions of this work could also help identify disease mutations in human regulatory DNA that are currently difficult to find and largely overlooked in the clinic. This work suggests there is a bright future for AI models of gene regulation trained on richer, more complex, and more diverse datasets.”

    Even before the study was formally published, Vaishnav began receiving queries from other researchers hoping to use the model to devise non-coding DNA sequences for use in gene therapies.

    “People have been studying regulatory evolution and fitness landscapes for decades now,” Vaishnav says. “I think our framework will go a long way in answering fundamental, open questions about the evolution and evolvability of gene regulatory DNA — and even help us design biological sequences for exciting new applications.” More

  • in

    Probing how proteins pair up inside cells

    Despite its minute size, a single cell contains billions of molecules that bustle around and bind to one another, carrying out vital functions. The human genome encodes about 20,000 proteins, most of which interact with partner proteins to mediate upwards of 400,000 distinct interactions. These partners don’t just latch onto one another haphazardly; they only bind to very specific companions that they must recognize inside the crowded cell. If they create the wrong pairings — or even the right pairings at the wrong place or wrong time — cancer or other diseases can ensue. Scientists are hard at work investigating these protein-protein relationships, in order to understand how they work, and potentially create drugs that disrupt or mimic them to treat disease.

    The average human protein is composed of approximately 400 building blocks called amino acids, which are strung together and folded into a complex 3D structure. Within this long string of building blocks, some proteins contain stretches of four to six amino acids called short linear motifs (SLiMs), which mediate protein-protein interactions. Despite their simplicity and small size, SLiMs and their binding partners facilitate key cellular processes. However, it’s been historically difficult to devise experiments to probe how SLiMs recognize their specific binding partners.

    To address this problem, a group led by Theresa Hwang PhD ’21 designed a screening method to understand how SLiMs selectively bind to certain proteins, and even distinguish between those with similar structures. Using the detailed information they gleaned from studying these interactions, the researchers created their own synthetic molecule capable of binding extremely tightly to a protein called ENAH, which is implicated in cancer metastasis. The team shared their findings in a pair of eLife studies, one published on Dec. 2, 2021, and the other published Jan. 25.

    “The ability to test hundreds of thousands of potential SLiMs for binding provides a powerful tool to explore why proteins prefer specific SLiM partners over others,” says Amy Keating, professor of biology and biological engineering and the senior author on both studies. “As we gain an understanding of the tricks that a protein uses to select its partners, we can apply these in protein design to make our own binders to modulate protein function for research or therapeutic purposes.”

    Most existing screens for SLiMs simply select for short, tight binders, while neglecting SLiMs that don’t grip their partner proteins quite as strongly. To survey SLiMs with a wide range of binding affinities, Keating, Hwang, and their colleagues developed their own screen called MassTitr.

    The researchers also suspected that the amino acids on either side of the SLiM’s core four-to-six amino acid sequence might play an underappreciated role in binding. To test their theory, they used MassTitr to screen the human proteome in longer chunks comprised of 36 amino acids, in order to see which “extended” SLiMs would associate with the protein ENAH.

    ENAH, sometimes referred to as Mena, helps cells to move. This ability to migrate is critical for healthy cells, but cancer cells can co-opt it to spread. Scientists have found that reducing the amount of ENAH decreases the cancer cell’s ability to invade other tissues — suggesting that formulating drugs to disrupt this protein and its interactions could treat cancer.

    Thanks to MassTitr, the team identified 33 SLiM-containing proteins that bound to ENAH — 19 of which are potentially novel binding partners. They also discovered three distinct patterns of amino acids flanking core SLiM sequences that helped the SLiMs bind even tighter to ENAH. Of these extended SLiMs, one found in a protein called PCARE bound to ENAH with the highest known affinity of any SLiM to date.

    Next, the researchers combined a computer program called dTERMen with X-ray crystallography in order understand how and why PCARE binds to ENAH over ENAH’s two nearly identical sister proteins (VASP and EVL). Hwang and her colleagues saw that the amino acids flanking PCARE’s core SliM caused ENAH to change shape slightly when the two made contact, allowing the binding sites to latch onto one another. VASP and EVL, by contrast, could not undergo this structural change, so the PCARE SliM did not bind to either of them as tightly.

    Inspired by this unique interaction, Hwang designed her own protein that bound to ENAH with unprecedented affinity and specificity. “It was exciting that we were able to come up with such a specific binder,” she says. “This work lays the foundation for designing synthetic molecules with the potential to disrupt protein-protein interactions that cause disease — or to help scientists learn more about ENAH and other SLiM-binding proteins.”  

    Ylva Ivarsson, a professor of biochemistry at Uppsala University who was not involved with the study, says that understanding how proteins find their binding partners is a question of fundamental importance to cell function and regulation. The two eLife studies, she explains, show that extended SLiMs play an underappreciated role in determining the affinity and specificity of these binding interactions.

    “The studies shed light on the idea that context matters, and provide a screening strategy for a variety of context-dependent binding interactions,” she says. “Hwang and co-authors have created valuable tools for dissecting the cellular function of proteins and their binding partners. Their approach could even inspire ENAH-specific inhibitors for therapeutic purposes.”

    Hwang’s biggest takeaway from the project is that things are not always as they seem: even short, simple protein segments can play complex roles in the cell. As she puts it: “We should really appreciate SLiMs more.” More

  • in

    Studying learner engagement during the Covid-19 pandemic

    While massive open online classes (MOOCs) have been a significant trend in higher education for many years now, they have gained a new level of attention during the Covid-19 pandemic. Open online courses became a critical resource for a wide audience of new learners during the first stages of the pandemic — including students whose academic programs had shifted online, teachers seeking online resources, and individuals suddenly facing lockdown or unemployment and looking to build new skills.

    Mary Ellen Wiltrout, director of online and blended learning initiatives and lecturer in digital learning in the Department of Biology, and Virginia “Katie” Blackwell, currently an MIT PhD student in biology, published a paper this summer in the European MOOC Stakeholder Summit (EMOOCs 2021) conference proceedings evaluating data for the online course 7.00x (Introduction to Biology). Their research objective was to better understand whether the shift to online learning that occurred during the pandemic led to increased learner engagement in the course.Blackwell participated in this research as part of the Bernard S. and Sophie G. Gould MIT Summer Research Program (MSRP) in Biology, during the uniquely remote MSRPx-Biology 2020 student cohort. She collaborated on the project while working toward her bachelor’s degree in biochemistry and molecular biology from the University of Texas at Dallas, and collaborated on the research while in Texas. She has since applied and been accepted into MIT’s PhD program in biology.

    “MSRP Biology was a transformative experience for me. I learned a lot about the nature of research and the MIT community in a very short period of time and loved every second of the program. Without MSRP, I would never have even considered applying to MIT for my PhD. After MSRP and working with Mary Ellen, MIT biology became my first-choice program and I felt like I had a shot at getting in,” says Blackwell.

    Play video

    Many MOOC platforms experienced increased website traffic in 2020, with 30 new MOOC-based degrees and more than 60 million new learners.

    “We find that the tremendous, lifelong learning opportunities that MOOCs provide are even more important and sought-after when traditional education is disrupted. During the pandemic, people had to be at home more often, and some faced unemployment requiring a career transition,” says Wiltrout.

    Wiltrout and Blackwell wanted to build a deeper understanding of learner profiles rather than looking exclusively at enrollments. They looked at all available data, including: enrollment demographics (i.e., country and “.edu” participants); proportion of learners engaged with videos, problems, and forums; number of individual engagement events with videos, problems, and forums; verification and performance; and the course “track” level — including auditing (for free) and verified (paying and receiving access to additional course content, including access to a comprehensive competency exam). They analyzed data in these areas from five runs of 7.00x in this study, including three pre-pandemic runs of April, July, and November 2019 and two pandemic runs of March and July 2020. 

    The March 2020 run had the same count of verified-track participants as all three pre-pandemic runs combined. The July 2020 run enrolled nearly as many verified-track participants as the March 2020 run. Wiltrout says that introductory biology content may have attracted great attention during the early days and months of the Covid-19 pandemic, as people may have had a new (or renewed) interest in learning about (or reviewing) viruses, RNA, the inner workings of cells, and more.

    Wiltrout and Blackwell found that the enrollment count for the March 2020 run of the course increased at almost triple the rate of the three pre-pandemic runs. During the early days of March 2020, the enrollment metrics appeared similar to enrollment metrics for the April 2019 run — both in rate and count — but the enrollment rate increased sharply around March 15, 2020. The July 2020 run began with more than twice as many learners already enrolled by the first day of the course, but continued with half the enrollment rate of the March 2020 course. In terms of learner demographics, during the pandemic, there was a higher proportion of learners with .edu addresses, indicating that MOOCs were often used by students enrolled in other schools. 

    Viewings of course videos increased at the beginning of the pandemic. During the March 2020 run, both verified-track and certified participants viewed far more unique videos during March 2020 than in the pre-pandemic runs of the course; even auditor-track learners — not aiming for certification — still viewed all videos offered. During the July 2020 run, however, both verified-track and certified participants viewed far fewer unique videos than during all prior runs. The proportion of participants who viewed at least one video decreased in the July 2020 run to 53 percent, from a mean of 64 percent in prior runs. Blackwell and Wiltrout say that this decrease — as well as the overall dip in participation in July 2020 — might be attributed to shifting circumstances for learners that allowed for less time to watch videos and participate in the course, as well as some fatigue from the extra screen time.

    The study found that 4.4 percent of March 2020 participants and 4.5 percent of July 2020 participants engaged through forum posting — which was 1.4 to 3.3 times higher than pre-pandemic proportions of forum posting. The increase in forum engagement may point to a desire for community engagement during a time when many were isolated and sheltering in place.

    “Through the day-to-day work of my research team and also through the engagement of the learners in 7.00x, we can see that there is great potential for meaningful connections in remote experiences,” says Wiltrout. “An increase in participation for an online course may not always remain at the same high level, in the long term, but overall, we’re continuing to see an increase in the number of MOOCs and other online programs offered by all universities and institutions, as well as an increase in online learners.” More

  • in

    Differences in T cells’ functional states determine resistance to cancer therapy

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer in humans. Some patients with NSCLC receive a therapy called immune checkpoint blockade (ICB) that helps kill cancer cells by reinvigorating a subset of immune cells called T cells, which are “exhausted” and have stopped working. However, only about 35 percent of NSCLC patients respond to ICB therapy. Stefani Spranger’s lab at the MIT Department of Biology explores the mechanisms behind this resistance, with the goal of inspiring new therapies to better treat NSCLC patients. In a new study published on Oct. 29 in Science Immunology, a team led by Spranger lab postdoc Brendan Horton revealed what causes T cells to be non-responsive to ICB — and suggests a possible solution.

    Scientists have long thought that the conditions within a tumor were responsible for determining when T cells stop working and become exhausted after being overstimulated or working for too long to fight a tumor. That’s why physicians prescribe ICB to treat cancer — ICB can invigorate the exhausted T cells within a tumor. However, Horton’s new experiments show that some ICB-resistant T cells stop working before they even enter the tumor. These T cells are not actually exhausted, but rather they become dysfunctional due to changes in gene expression that arise early during the activation of a T cell, which occurs in lymph nodes. Once activated, T cells differentiate into certain functional states, which are distinguishable by their unique gene expression patterns.

    The notion that the dysfunctional state that leads to ICB resistance arises before T cells enter the tumor is quite novel, says Spranger, the Howard S. and Linda B. Stern Career Development Professor, a member of the Koch Institute for Integrative Cancer Research, and the study’s senior author.

    “We show that this state is actually a preset condition, and that the T cells are already non-responsive to therapy before they enter the tumor,” she says. As a result, she explains, ICB therapies that work by reinvigorating exhausted T cells within the tumor are less likely to be effective. This suggests that combining ICB with other forms of immunotherapy that target T cells differently might be a more effective approach to help the immune system combat this subset of lung cancer.

    In order to determine why some tumors are resistant to ICB, Horton and the research team studied T cells in murine models of NSCLC. The researchers sequenced messenger RNA from the responsive and non-responsive T cells in order to identify any differences between the T cells. Supported in part by the Koch Institute Frontier Research Program, they used a technique called Seq-Well, developed in the lab of fellow Koch Institute member J. Christopher Love, the Raymond A. (1921) and Helen E. St. Laurent Professor of Chemical Engineering and a co-author of the study. The technique allows for the rapid gene expression profiling of single cells, which permitted Spranger and Horton to get a very granular look at the gene expression patterns of the T cells they were studying.

    Seq-Well revealed distinct patterns of gene expression between the responsive and non-responsive T cells. These differences, which are determined when the T cells assume their specialized functional states, may be the underlying cause of ICB resistance.

    Now that Horton and his colleagues had a possible explanation for why some T cells did not respond to ICB, they decided to see if they could help the ICB-resistant T cells kill the tumor cells. When analyzing the gene expression patterns of the non-responsive T cells, the researchers had noticed that these T cells had a lower expression of receptors for certain cytokines, small proteins that control immune system activity. To counteract this, the researchers treated lung tumors in murine models with extra cytokines. As a result, the previously non-responsive T cells were then able to fight the tumors — meaning that the cytokine therapy prevented, and potentially even reversed, the dysfunctionality.

    Administering cytokine therapy to human patients is not currently safe, because cytokines can cause serious side effects as well as a reaction called a “cytokine storm,” which can produce severe fevers, inflammation, fatigue, and nausea. However, there are ongoing efforts to figure out how to safely administer cytokines to specific tumors. In the future, Spranger and Horton suspect that cytokine therapy could be used in combination with ICB.

    “This is potentially something that could be translated into a therapeutic that could increase the therapy response rate in non-small cell lung cancer,” Horton says.

    Spranger agrees that this work will help researchers develop more innovative cancer therapies, especially because researchers have historically focused on T cell exhaustion rather than the earlier role that T cell functional states might play in cancer.

    “If T cells are rendered dysfunctional early on, ICB is not going to be effective, and we need to think outside the box,” she says. “There’s more evidence, and other labs are now showing this as well, that the functional state of the T cell actually matters quite substantially in cancer therapies.” To Spranger, this means that cytokine therapy “might be a therapeutic avenue” for NSCLC patients beyond ICB.

    Jeffrey Bluestone, the A.W. and Mary Margaret Clausen Distinguished Professor of Metabolism and Endocrinology at the University of California-San Francisco, who was not involved with the paper, agrees. “The study provides a potential opportunity to ‘rescue’ immunity in the NSCLC non-responder patients with appropriate combination therapies,” he says.

    This research was funded by the Pew-Stewart Scholars for Cancer Research, the Ludwig Center for Molecular Oncology, the Koch Institute Frontier Research Program through the Kathy and Curt Mable Cancer Research Fund, and the National Cancer Institute. More