More stories

  • in

    Exploring the mysterious alphabet of sperm whales

    The allure of whales has stoked human consciousness for millennia, casting these ocean giants as enigmatic residents of the deep seas. From the biblical Leviathan to Herman Melville’s formidable Moby Dick, whales have been central to mythologies and folklore. And while cetology, or whale science, has improved our knowledge of these marine mammals in the past century in particular, studying whales has remained a formidable a challenge.Now, thanks to machine learning, we’re a little closer to understanding these gentle giants. Researchers from the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and Project CETI (Cetacean Translation Initiative) recently used algorithms to decode the “sperm whale phonetic alphabet,” revealing sophisticated structures in sperm whale communication akin to human phonetics and communication systems in other animal species. In a new open-access study published in Nature Communications, the research shows that sperm whales codas, or short bursts of clicks that they use to communicate, vary significantly in structure depending on the conversational context, revealing a communication system far more intricate than previously understood. 

    Play video

    The Secret Language of Sperm Whales, DecodedVideo: MIT CSAIL

    Nine thousand codas, collected from Eastern Caribbean sperm whale families observed by the Dominica Sperm Whale Project, proved an instrumental starting point in uncovering the creatures’ complex communication system. Alongside the data gold mine, the team used a mix of algorithms for pattern recognition and classification, as well as on-body recording equipment. It turned out that sperm whale communications were indeed not random or simplistic, but rather structured in a complex, combinatorial manner. The researchers identified something of a “sperm whale phonetic alphabet,” where various elements that researchers call  “rhythm,” “tempo,” “rubato,” and “ornamentation” interplay to form a vast array of distinguishable codas. For example, the whales would systematically modulate certain aspects of their codas based on the conversational context, such as smoothly varying the duration of the calls — rubato — or adding extra ornamental clicks. But even more remarkably, they found that the basic building blocks of these codas could be combined in a combinatorial fashion, allowing the whales to construct a vast repertoire of distinct vocalizations.The experiments were conducted using acoustic bio-logging tags (specifically something called “D-tags”) deployed on whales from the Eastern Caribbean clan. These tags captured the intricate details of the whales’ vocal patterns. By developing new visualization and data analysis techniques, the CSAIL researchers found that individual sperm whales could emit various coda patterns in long exchanges, not just repeats of the same coda. These patterns, they say, are nuanced, and include fine-grained variations that other whales also produce and recognize.“We are venturing into the unknown, to decipher the mysteries of sperm whale communication without any pre-existing ground truth data,” says Daniela Rus, CSAIL director and professor of electrical engineering and computer science (EECS) at MIT. “Using machine learning is important for identifying the features of their communications and predicting what they say next. Our findings indicate the presence of structured information content and also challenges the prevailing belief among many linguists that complex communication is unique to humans. This is a step toward showing that other species have levels of communication complexity that have not been identified so far, deeply connected to behavior. Our next steps aim to decipher the meaning behind these communications and explore the societal-level correlations between what is being said and group actions.”Whaling aroundSperm whales have the largest brains among all known animals. This is accompanied by very complex social behaviors between families and cultural groups, necessitating strong communication for coordination, especially in pressurized environments like deep sea hunting.Whales owe much to Roger Payne, former Project CETI advisor, whale biologist, conservationist, and MacArthur Fellow who was a major figure in elucidating their musical careers. In the noted 1971 Science article “Songs of Humpback Whales,” Payne documented how whales can sing. His work later catalyzed the “Save the Whales” movement, a successful and timely conservation initiative.“Roger’s research highlights the impact science can have on society. His finding that whales sing led to the marine mammal protection act and helped save several whale species from extinction. This interdisciplinary research now brings us one step closer to knowing what sperm whales are saying,” says David Gruber, lead and founder of Project CETI and distinguished professor of biology at the City University of New York.Today, CETI’s upcoming research aims to discern whether elements like rhythm, tempo, ornamentation, and rubato carry specific communicative intents, potentially providing insights into the “duality of patterning” — a linguistic phenomenon where simple elements combine to convey complex meanings previously thought unique to human language.Aliens among us“One of the intriguing aspects of our research is that it parallels the hypothetical scenario of contacting alien species. It’s about understanding a species with a completely different environment and communication protocols, where their interactions are distinctly different from human norms,” says Pratyusha Sharma, an MIT PhD student in EECS, CSAIL affiliate, and the study’s lead author. “We’re exploring how to interpret the basic units of meaning in their communication. This isn’t just about teaching animals a subset of human language, but decoding a naturally evolved communication system within their unique biological and environmental constraints. Essentially, our work could lay the groundwork for deciphering how an ‘alien civilization’ might communicate, providing insights into creating algorithms or systems to understand entirely unfamiliar forms of communication.”“Many animal species have repertoires of several distinct signals, but we are only beginning to uncover the extent to which they combine these signals to create new messages,” says Robert Seyfarth, a University of Pennsylvania professor emeritus of psychology who was not involved in the research. “Scientists are particularly interested in whether signal combinations vary according to the social or ecological context in which they are given, and the extent to which signal combinations follow discernible ‘rules’ that are recognized by listeners. The problem is particularly challenging in the case of marine mammals, because scientists usually cannot see their subjects or identify in complete detail the context of communication. Nonetheless, this paper offers new, tantalizing details of call combinations and the rules that underlie them in sperm whales.”Joining Sharma, Rus, and Gruber are two others from MIT, both CSAIL principal investigators and professors in EECS: Jacob Andreas and Antonio Torralba. They join Shane Gero, biology lead at CETI, founder of the Dominica Sperm Whale Project, and scientist-in residence at Carleton University. The paper was funded by Project CETI via Dalio Philanthropies and Ocean X, Sea Grape Foundation, Rosamund Zander/Hansjorg Wyss, and Chris Anderson/Jacqueline Novogratz through The Audacious Project: a collaborative funding initiative housed at TED, with further support from the J.H. and E.V. Wade Fund at MIT. More

  • in

    Characterizing social networks

    People tend to connect with others who are like them. Alumni from the same alma mater are more likely to collaborate over a research project together, or individuals with the same political beliefs are more likely to join the same political parties, attend rallies, and engage in online discussions. This sociology concept, called homophily, has been observed in many network science studies. But if like-minded individuals cluster in online and offline spaces to reinforce each other’s ideas and form synergies, what does that mean for society?

    Researchers at MIT wanted to investigate homophily further to understand how groups of three or more interact in complex societal settings. Prior research on understanding homophily has studied relationships between pairs of people. For example, when two members of Congress co-sponsor a bill, they are likely to be from the same political party.

    However, less is known about whether group interactions between three or more people are likely to occur between similar individuals. If three members of Congress co-sponsor a bill together, are all three likely to be members of the same party, or would we expect more bipartisanship? When the researchers tried to extend traditional methods to measure homophily in these larger group interactions, they found the results can be misleading.

    “We found that homophily observed in pairs, or one-to-one interactions, can make it seem like there’s more homophily in larger groups than there really is,” says Arnab Sarker, graduate student in the Institute for Data, Systems and Society (IDSS) and lead author of the study published in Proceedings of the National Academy of Sciences. “The previous measure didn’t account for the way in which two people already know each other in friendship settings,” he adds.

    To address this issue, Sarker, along with co-authors Natalie Northrup ’22 and Ali Jadbabaie, the JR East Professor of Engineering, head of the Department of Civil and Environmental Engineering, and core faculty member of IDSS, developed a new way of measuring homophily. Borrowing tools from algebraic topology, a subfield in mathematics typically applied in physics, they developed a new measure to understand whether homophily occurred in group interactions.

    The new measure, called simplicial homophily, separates the homophily seen in one-on-one interactions from those in larger group interactions and is based on the mathematical concept of a simplicial complex. The researchers tested this new measure with real-world data from 16 different datasets and found that simplicial homophily provides more accurate insights into how similar things interact in larger groups. Interestingly, the new measure can better identify instances where there is a lack of similarity in larger group interactions, thus rectifying a weakness observed in the previous measure.

    One such example of this instance was demonstrated in the dataset from the global hotel booking website, Trivago. They found that when travelers are looking at two hotels in one session, they often pick hotels that are close to one another geographically. But when they look at more than two hotels in one session, they are more likely to be searching for hotels that are farther apart from one another (for example, if they are taking a vacation with multiple stops). The new method showed “anti-homophily” — instead of similar hotels being chosen together, different hotels were chosen together.

    “Our measure controls for pairwise connections and is suggesting that there’s more diversity in the hotels that people are looking for as group size increases, which is an interesting economic result,” says Sarker.

    Additionally, they discovered that simplicial homophily can help identify when certain characteristics are important for predicting if groups will interact in the future. They found that when there’s a lot of similarity or a lot of difference between individuals who already interact in groups, then knowing individual characteristics can help predict their connection to each other in the future.

    Northrup was an undergraduate researcher on the project and worked with Sarker and Jadbabaie over three semesters before she graduated. The project gave her an opportunity to take some of the concepts she learned in the classroom and apply them.

    “Working on this project, I really dove into building out the higher-order network model, and understanding the network, the math, and being able to implement it at a large scale,” says Northrup, who was in the civil and environmental engineering systems track with a double major in economics.

    The new measure opens up opportunities to study complex group interactions in a broad range of network applications, from ecology to traffic and socioeconomics. One of the areas Sarker has interest in exploring is the group dynamics of people finding jobs through social networks. “Does higher-order homophily affect how people get information about jobs?” he asks.    

    Northrup adds that it could also be used to evaluate interventions or specific policies to connect people with job opportunities outside of their network. “You can even use it as a measurement to evaluate how effective that might be.”

    The research was supported through funding from a Vannevar Bush Fellowship from the Office of the U.S. Secretary of Defense and from the U.S. Army Research Office Multidisciplinary University Research Initiative. More

  • in

    Why big changes early in life can help later on

    Imagine moving from state to state while growing up in the U.S., transferring between high schools, and eventually attending college out of state. The first two events might seem disruptive, and the third involves departing a local community. And yet, these things may be exactly what helps some people thrive later in life.

    That’s one implication of a newly published study about social networks co-authored by an MIT professor, which finds that so-called long ties — connections between people who otherwise lack any mutual contacts — are highly associated with greater economic success in life. Those long ties are fostered partly by turning points such as moving between states, and switching schools.

    The study, based on a large quantity of Facebook data, both illuminates how productive social networks are structured and identifies specific life events that significantly shape people’s networks.

    “People who have more long ties [on Facebook], and who have stronger long ties, have better economic indicators,” says Dean Eckles, an MIT professor and co-author of a new paper detailing the study’s findings.

    “Our hope is that the study provides better evidence of this really strong relationship, at the scale of the entire U.S,” Eckles says. “There hasn’t really been this sort of investigation into those types of disruptive life events.”

    The paper, “Long ties, disruptive life events, and economic prosperity,” appears in open-access form in Proceedings of the National Academy of Sciences. The authors are Eaman Jahani PhD ’21, a postdoc and lecturer at the University of California at Berkeley, who received his doctorate from MIT’s Institute for Data, Systems, and Society, and the Statistics and Data Science Center; Samuel P. Fraiberger, a data scientist at the World Bank; Michael Bailey, an economist and research scientist manager at Meta Platforms (which operates Facebook); and Eckles, an associate professor of marketing at MIT Sloan School of Management. Jahani, who worked at Meta when the study was conducted, performed the initial research, and the aggregate data analysis protected the privacy of individuals in compliance with regulations.

    On the move

    In recent decades, scholars have often analyzed social networks while building on a 1973 study by Stanford University’s Mark Granovetter, “The Strength of Weak Ties,” one of the 10 most-cited social science papers of all time. In it, Granovetter postulated that a network’s “weak ties”— the people you know less well — are vital. Your best friends may have networks quite similar to your own, but your “weak ties” provide additional connections useful for employment, and more. Granovetter also edited this current paper for PNAS.

    To conduct the study, the scholars mapped all reciprocal interactions among U.S.-based Facebook accounts from December 2020 to June 2021, to build a data-rich picture of social networks in action. The researchers maintain a distinction between “long” and “short” ties; in this definition, long ties have no other mutual connections at all, while short ties have some.

    Ultimately the scholars found that, when assessing everyone who has lived in the same state since 2012, those who had previously moved among U.S. states had 13 percent more long ties on Facebook than those who had not. Similarly, people who had switched high schools had 10 percent more long ties than people who had not.

    Facebook does not have income data for its users, so the scholars used a series of proxy measures to evaluate financial success. People with more long ties tend to live in higher-income areas, have more internet-connected devices, use more expensive mobile phones, and make more donations to charitable causes, compared to those who do not.

    Additionally, the research evaluates whether or not moving among states, or switching schools, is itself what causes people to have more long ties. After all, it could be the case that families who move more often have qualities that lead family members to be more proactive about forging ties with people.

    To examine this, the research team analyzed a subgroup of Facebook users who had switched high schools only when their first high school closed — meaning it was not their choice to change. Those people had 6 percent more long ties than those who had attended the same high schools but not been forced to switch; given this common pool of school attendees forced into divergent circumstances, the evidence suggests that making the school change itself “shapes the proclivity to connect with different communities,” as the scholars write in the paper. 

    “It’s a plausibly random nudge,” Eckles says, “and we find the people who were exposed to these high school closures end up with more long ties. I think that is one of the compelling elements pointing toward a causal story here.”

    Three types of events, same trend

    As the scholars acknowledge in the paper, there are some limitations to the study. Because it focuses on Facebook interactions, the research does not account for offline activities that may sustain social networks. It is also likely that economic success itself shapes people’s social networks, and not just that networks help shape success. Some people may have opportunities to maintain long ties, through professional work or travel, that others do not.

    On the other hand, the study does uncover long-term social network ties that had not been evaluated before, and, as the authors write,”having three different types of events — involving different processes by which people are selected into the disruption — pointing to the same conclusions makes for a more robust and notable pattern.”

    Other scholars in the field believe the study is a notable piece of research. In a commentary on the paper also published in PNAS, Michael Macy, a sociology professor at Cornell University, writes that “the authors demonstrate the importance of contributing to cumulative knowledge by confirming hypotheses derived from foundational theory while at the same time elaborating on what was previously known by digging deeper into the underlying causal mechanisms. In short, the paper is must reading not only for area specialists but for social scientists across the disciplines.”

    For his part, Eckles emphasizes that the researchers are releasing anonymized data from the study, so that other scholars can build on it, and develop additional insights about social network structure, while complying with all privacy regulations.

    “We’ve released [that] data and made it public, and we’re really happy to be doing that,” Eckles says. “We want to make as much of this as possible open to others. That’s one of the things that I’m hoping is part of the broader impact of the paper.”

    Jahani worked as a contractor at Meta Platforms, which operates Facebook, while conducting the research. Eckles has received past funding from Meta, as well as conference sponsorship, and previously worked there, before joining MIT.   More

  • in

    Study: Covid-19 has reduced diverse urban interactions

    The Covid-19 pandemic has reduced how often urban residents intersect with people from different income brackets, according to a new study led by MIT researchers.

    Examining the movement of people in four U.S. cities before and after the onset of the pandemic, the study found a 15 to 30 percent decrease in the number of visits residents were making to areas that are socioeconomically different than their own. In turn, this has reduced people’s opportunities to interact with others from varied social and economic spheres.

    “Income diversity of urban encounters decreased during the pandemic, and not just in the lockdown stages,” says Takahiro Yabe, a postdoc at the Media Lab and co-author of a newly published paper detailing the study’s results. “It decreased in the long term as well, after mobility patterns recovered.”

    Indeed, the study found a large immediate dropoff in urban movement in the spring of 2020, when new policies temporarily shuttered many types of institutions and businesses in the U.S. and much of the world due to the emergence of the deadly Covid-19 virus. But even after such restrictions were lifted and the overall amount of urban movement approached prepandemic levels, movement patterns within cities have narrowed; people now visit fewer places.

    “We see that changes like working from home, less exploration, more online shopping, all these behaviors add up,” says Esteban Moro, a research scientist at MIT’s Sociotechnical Systems Research Center (SSRC) and another of the paper’s co-authors. “Working from home is amazing and shopping online is great, but we are not seeing each other at the rates we were before.”

    The paper, “Behavioral changes during the Covid-19 pandemic decreased income diversity of urban encounters,” appears in Nature Communications. The co-authors are Yabe; Bernardo García Bulle Bueno, a doctoral candidate at MIT’s Institute for Data, Systems, and Society (IDSS); Xiaowen Dong, an associate professor at Oxford University; Alex Pentland, professor of media arts and sciences at MIT and the Toshiba Professor at the Media Lab; and Moro, who is also an associate professor at the University Carlos III of Madrid.

    A decline in exploration

    To conduct the study, the researchers examined anonymized cellphone data from 1 million users over a three-year period, starting in early 2019, with data focused on four U.S. cities: Boston, Dallas, Los Angeles, and Seattle. The researchers recorded visits to 433,000 specific “point of interest” locations in those cities, corroborated in part with records from Infogroup’s U.S. Business Database, an annual census of company information.  

    The researchers used U.S. Census Bureau data to categorize the socioeconomic status of the people in the study, placing everyone into one of four income quartiles, based on the average income of the census block (a small area) in which they live. The scholars made the same income-level assessment for every census block in the four cities, then recorded instances in which someone spent from 10 minutes to four hours in a census block other than their own, to see how often people visited areas in different income quartiles. 

    Ultimately, the researchers found that by late 2021, the amount of urban movement overall was returning to prepandemic levels, but the scope of places residents were visiting had become more restricted.

    Among other things, people made many fewer visits to museums, leisure venues, transport sites, and coffee shops. Visits to grocery stores remained fairly constant — but people tend not to leave their socioeconomic circles for grocery shopping.

    “Early in the pandemic, people reduced their mobility radius significantly,” Yabe says. “By late 2021, that decrease flattened out, and the average dwell time people spent at places other than work and home recovered to prepandemic levels. What’s different is that exploration substantially decreased, around 5 to 10 percent. We also see less visitation to fun places.” He adds: “Museums are the most diverse places you can find, parks — they took the biggest hit during the pandemic. Places that are [more] segregated, like grocery stores, did not.”

    Overall, Moro notes, “When we explore less, we go to places that are less diverse.”

    Different cities, same pattern

    Because the study encompassed four cities with different types of policies about reopening public sites and businesses during the pandemic, the researchers could also evaluate what impact public health policies had on urban movement. But even in these different settings, the same phenomenon emerged, with a narrower range of mobility occurring by late 2021.

    “Despite the substantial differences in how cities dealt with Covid-19, the decrease in diversity and the behavioral changes were surprisingly similar across the four cities,” Yabe observes.

    The researchers emphasize that these changes in urban movement can have long-term societal effects. Prior research has shown a significant association between a diversity of social connections and greater economic success for people in lower-income groups. And while some interactions between people in different income quartiles might be brief and transactional, the evidence suggests that, on aggregate, other more substantial connections have also been reduced. Additionally, the scholars note, the narrowing of experience can also weaken civic ties and valuable political connections.

    “It’s creating an urban fabric that is actually more brittle, in the sense that we are less exposed to other people,” Moro says. “We don’t get to know other people in the city, and that is very important for policies and public opinion. We need to convince people that new policies and laws would be fair. And the only way to do that is to know other people’s needs. If we don’t see them around the city, that will be impossible.”

    At the same time, Yabe adds, “I think there is a lot we can do from a policy standpoint to bring people back to places that used to be a lot more diverse.” The researchers are currently developing further studies related to cultural and public institutions, as well and transportation issues, to try to evaluate urban connectivity in additional detail.

    “The quantity of our mobility has recovered,” Yabe says. “The quality has really changed, and we’re more segregated as a result.” More

  • in

    Festival of Learning 2023 underscores importance of well-designed learning environments

    During its first in-person gathering since 2020, MIT’s Festival of Learning 2023 explored how the learning sciences can inform the Institute on how to best support students. Co-sponsored by MIT Open Learning and the Office of the Vice Chancellor (OVC), this annual event celebrates teaching and learning innovations with MIT instructors, students, and staff.

    Bror Saxberg SM ’85, PhD ’89, founder of LearningForge LLC and former chief learning officer at Kaplan, Inc., was invited as keynote speaker, with opening remarks by MIT Chancellor Melissa Nobles and Vice President for Open Learning Eric Grimson, and discussion moderated by Senior Associate Dean of Open Learning Christopher Capozzola. This year’s festival focused on how creating well-designed learning environments using learning engineering can increase learning success.

    Play video

    2023 Festival of Learning: Highlights

    Well-designed learning environments are key

    In his keynote speech “Learning Engineering: What We Know, What We Can Do,” Saxberg defined “learning engineering” as the practical application of learning sciences to real-world problems at scale. He said, “High levels can be reached by all learners, given access to well-designed instruction and motivation for enough practice opportunities.”

    Informed by decades of empirical evidence from the field of learning science, Saxberg’s own research, and insights from Kaplan, Inc., Saxberg finds that a hands-on strategy he calls “prepare, practice, perform” delivers better learning outcomes than a traditional “read, write, discuss” approach. Saxberg recommends educators devote at least 60 percent of learning time to hands-on approaches, such as producing, creating, and engaging. Only 20-30 percent of learning time should be spent in the more passive “knowledge acquisition” modes of listening and reading.

    “Here at MIT, a place that relies on data to make informed decisions, learning engineering can provide a framework for us to center in on the learner to identify the challenges associated with learning, and to apply the learning sciences in data-driven ways to improve instructional approaches,” said Nobles. During their opening remarks, Nobles and Grimson both emphasized how learning engineering at MIT is informed by the Institute’s commitment to educating the whole student, which encompasses student well-being and belonging in addition to academic rigor. “What lessons can we take away to change the way we think about education moving forward? This is a chance to iterate,” said Grimson.

    Well-designed learning environments are informed by understanding motivation, considering the connection between long-term and working memory, identifying the range of learners’ prior experience, grounding practice in authentic contexts (i.e., work environments), and using data-driven instructional approaches to iterate and improve.

    Play video

    2023 Festival of Learning: Keynote by Bror Saxberg

    Understand learner motivation

    Saxberg asserted that before developing course structures and teaching approaches known to encourage learning, educators must first examine learner motivation. Motivation doesn’t require enjoyment of the subject or task to spur engagement. Similar to how a well-designed physical training program can change your muscle cells, if a learner starts, persists, and exerts mental effort in a well-designed learning environment, they can change their neurons — they learn. Saxberg described four main barriers to learner motivation, and solutions for each:

    The learner doesn’t see the value of the lesson. Ways to address this include helping the learners find value; leveraging the learner’s expertise in another area to better understand the topic at hand; and making the activity itself enjoyable. “Finding value” could be as simple as explaining the practical applications of this knowledge in their future work in the field, or how this lesson prepares learners for their advanced level courses. 
    Self-efficacy for learners who don’t think they’re capable. Educators can point to parallel experiences with similar goals that students may have already achieved in another context. Alternatively, educators can share stories of professionals who have successfully transitioned from one area of expertise to another. 
    “Something” in the learner’s way, such as not having the time, space, or correct materials. This is an opportunity to demonstrate how a learner can use problem-solving skills to find a solution to their perceived problem. As with the barrier of self-efficacy, educators can assure learners that they are in control of the situation by sharing similar stories of those who’ve encountered the same problem and the solution they devised.
    The learner’s emotional state. This is no small barrier to motivation. If a learner is angry, depressed, scared, or grieving, it will be challenging for them to switch their mindset into learning mode. A wide array of emotions require a wide array of possible solutions, from structured conversation techniques to recommending professional help.
    Consider the cognitive load

    Saxberg has found that learning occurs when we use working memory to problem-solve, but our working memory can only process three to five verbal or conscious thoughts at a time. Long-term memory stores knowledge that can be accessed non-verbally and non-consciously, which is why experts appear to remember information effortlessly. Until a learner develops that expertise, extraneous information in a lesson will occupy space in their working memory, running the risk of distracting the learner from the desired learning outcome.

    To accommodate learners’ finite cognitive load, Saxberg suggested the solution of reevaluating which material is essential, then simplifying the exercise or removing unnecessary material accordingly. “That notion of, ‘what do we really need students to be able to do?’ helps you focus,” said Saxberg.

    Another solution is to leverage the knowledge, skills, and interests learners already bring to the course — these long-term memories can scaffold the new material. “What do you have in your head already, what do you love, what’s easy to draw from long-term memory? That would be the starting point for challenging new skills. It’s not the ending point because you want to use your new skills to then find out new things,” Saxberg said. Finally, consider how your course engages with the syllabi. Do you explain the reasoning behind the course structure? Do you show how the exercises or material will be applied to future courses or the field? Do you share best practices for engaging working memory and learning? By acknowledging and empathizing with the practical challenges that learners face, you can remove a barrier from their cognitive load.

    Ground practice in authentic contexts

    Saxberg stated that few experts read textbooks to learn new information — they discover what they need to know while working in the field, using those relevant facts in context. As such, students will have an easier time remembering facts if they’re practicing in relevant or similar environments to their future work.

    If students can practice classifying problems in real work contexts rather than theoretical practice problems, they can build a framework to classify what’s important. That helps students recognize the type of problem they’re trying to solve before trying to solve the problem itself. With enough hands-on practice and examples of how experts use processes and identify which principles are relevant, learners can holistically learn entire procedures. And that learning continues once learners graduate to the workforce: professionals often meet to exchange knowledge at conferences, charrettes, and other gatherings.

    Enhancing teaching at MIT

    The Festival of Learning furthers the Office of the Chancellor’s mission to advance academic innovation that will foster the growth of MIT students. The festival also aligns with the MIT Open Learning’s Residential Education team’s goal of making MIT education more effective and efficient. Throughout the year, their team offers continuous support to MIT faculty and instructors using digital technologies to augment and transform how they teach.

    “We are doubling down on our commitment to continuous growth in how we teach,” said Nobles. More

  • in

    Making each vote count

    Graduate student Jacob Jaffe wants to improve the administration of American elections. To do that, he is posing “questions in political science that we haven’t been asking enough,” he says, “and solving them with methods we haven’t been using enough.”

    Considerable research has been devoted to understanding “who votes, and what makes people vote or not vote,” says Jaffe. He is training his attention on questions of a different nature: Does providing practical information to voters about how to cast their ballots change how they will vote? Is it possible to increase the accuracy of vote-counting, on a state-by-state and even precinct-by-precinct basis? How do voters experience polling places? These problems form the core of his dissertation.

    Taking advantage of the resources at the MIT Election Data and Science Lab, where he serves as a researcher, Jaffe conducts novel field experiments to gather highly detailed information on local, state, and federal elections, and analyzes this trove with advanced statistical techniques. Whether investigating the probability of miscounts in voting, or the possibility of changing a voter’s mode of voting, Jaffe intends to strengthen the scaffolding that supports representative government. “Elections are both theoretically and normatively important; they’re the basis of our belief in the moral rightness of the state to do the things the state does,” he says.

    Click this link

    For one of his keystone projects, Jaffe seized a unique opportunity to run a big field experiment. In summer 2020, at the height of the Covid-19 pandemic, he emailed 80,000 Floridians instructions on how to vote in an upcoming primary by mail. His email contained a link enabling recipients to fill out two simple questions to receive a ballot. “I wanted to learn if this was an effective method for getting people to vote by mail, and I proved it is, statistically,” he says. “This is important to know because if elections are held in times when we might need people to vote nonlocally or vote using one method over another — if they’re displaced by a hurricane or another emergency, for instance — I learned that we can effect a new vote mode practically and quickly.”

    One of Jaffe’s insights from this experiment is that “people do read their voting-related emails, but the content of the email has to be something they can act on proximately,” he says. “A message reminding them to vote two weeks from now is not so helpful.” The lower the burden on an individual to participate in voting, whether due to proximity to a polling site or instructions on how to receive and cast a ballot, the greater the likelihood of that person engaging in the election.

    “If we want people to vote by mail, we need to reduce the informational cost so it’s easier for voters to understand how the system works,” he says.

    Another significant research thrust for Jaffe involves scrutinizing accuracy in vote counting, using instances of recounts in presidential elections. Ensuring each vote counts, he says, “is one of the most fundamental questions in democracy,” he says.

    With access to 20 elections in 2020, Jaffe is comparing original vote totals for each candidate to the recounted, correct tally, on a precinct-level basis. “Using original combinatorial techniques, I can estimate the probability of miscounting ballots,” he says. The ultimate goal is to generate a granular picture of the efficacy of election administration across the country.

    “It varies a lot by state, and most states do a good job,” he says. States that take their time in counting perform better. “There’s a phenomenon where some towns race to get results in as quickly as possible, and this affects their accuracy.”

    In spite of the bright spots, Jaffe sees chronic underfunding of American elections. “We need to give local administrators the resources, the time and money to fund employees to do their jobs,” he says. The worse the situation is, “the more likely that elections will be called wrong, with no one knowing.” Jaffe believes that his analysis can offer states useful information for improving election administration. “Determining how good a place is historically at counting ballots can help determine the likelihood of needing costly recounts in future elections,” he says.

    The ballot box and beyond

    It didn’t take Jaffe long to decide on a life dedicated to studying politics. Part of a Boston-area family who, he says, “liked discussing what was going on in the world,” he had his own subscriptions to Time magazine at age 9, and to The Economist in middle school. During high school, he volunteered for then-Massachusetts Representative Barney Frank and Senator John Kerry, working on constituent services. At Rice University, he interned all four years with political scientist Robert M. Stein, an expert on voting and elections. With Stein’s help, Jaffe landed a position the summer before his senior year with the Department of Justice (DOJ), researching voting rights cases.

    “The experience was fascinating, and the work felt super important,” says Jaffe. His portfolio involved determining whether legal challenges to particular elections met the statistical standard for racial gerrymandering. “I had to answer hard quantitative questions about the relationship between race and voting in an area, and whether minority candidates were systematically prevented from winning,” he says.

    But while Jaffe cared a lot about this work, he didn’t feel adequately challenged. “As a 21-year-old at DOJ, I learned that I could address problems in the world using statistics,” he says. “But I felt I could have a greater impact addressing tougher questions outside of voting rights.”

    Jaffe was drawn to political science at MIT, and specifically to the research of Charles Stewart III, the Kenan Sahin Distinguished Professor of Political Science, director of the MIT Election Lab, and head of Jaffe’s thesis committee. It wasn’t just the opportunity to plumb the lab’s singular repository of voting data that attracted Jaffe, but its commitment to making every vote count. For Jaffe, this was a call to arms to investigate the many, and sometimes quotidian, obstacles, between citizens and ballot boxes.

    To this end, he has been analyzing, with the help of mathematical methods from queuing theory, why some elections involve wait lines of six hours and longer at polling sites. “We know that simpler ballots mean people move don’t get stuck in these lines, where they might potentially give up before voting,” he says. “Looking at the content of ballots and the interval between voter check-in and check-out, I learned that adding races, rather than candidates, to a ballot, means that people take more time completing ballots, leading to interminable lines.”

    A key takeaway from his ensemble of studies is that “while it’s relatively rare that elections are bad, we shouldn’t think that we’re good to go,” he says. “Instead, we need to be asking under what conditions do things get bad, and how can we make them better.” More

  • in

    Systems scientists find clues to why false news snowballs on social media

    The spread of misinformation on social media is a pressing societal problem that tech companies and policymakers continue to grapple with, yet those who study this issue still don’t have a deep understanding of why and how false news spreads.

    To shed some light on this murky topic, researchers at MIT developed a theoretical model of a Twitter-like social network to study how news is shared and explore situations where a non-credible news item will spread more widely than the truth. Agents in the model are driven by a desire to persuade others to take on their point of view: The key assumption in the model is that people bother to share something with their followers if they think it is persuasive and likely to move others closer to their mindset. Otherwise they won’t share.

    The researchers found that in such a setting, when a network is highly connected or the views of its members are sharply polarized, news that is likely to be false will spread more widely and travel deeper into the network than news with higher credibility.

    This theoretical work could inform empirical studies of the relationship between news credibility and the size of its spread, which might help social media companies adapt networks to limit the spread of false information.

    “We show that, even if people are rational in how they decide to share the news, this could still lead to the amplification of information with low credibility. With this persuasion motive, no matter how extreme my beliefs are — given that the more extreme they are the more I gain by moving others’ opinions — there is always someone who would amplify [the information],” says senior author Ali Jadbabaie, professor and head of the Department of Civil and Environmental Engineering and a core faculty member of the Institute for Data, Systems, and Society (IDSS) and a principal investigator in the Laboratory for Information and Decision Systems (LIDS).

    Joining Jadbabaie on the paper are first author Chin-Chia Hsu, a graduate student in the Social and Engineering Systems program in IDSS, and Amir Ajorlou, a LIDS research scientist. The research will be presented this week at the IEEE Conference on Decision and Control.

    Pondering persuasion

    This research draws on a 2018 study by Sinan Aral, the David Austin Professor of Management at the MIT Sloan School of Management; Deb Roy, an associate professor of media arts and sciences at the Media Lab; and former postdoc Soroush Vosoughi (now an assistant professor of computer science at Dartmouth University). Their empirical study of data from Twitter found that false news spreads wider, faster, and deeper than real news.

    Jadbabaie and his collaborators wanted to drill down on why this occurs.

    They hypothesized that persuasion might be a strong motive for sharing news — perhaps agents in the network want to persuade others to take on their point of view — and decided to build a theoretical model that would let them explore this possibility.

    In their model, agents have some prior belief about a policy, and their goal is to persuade followers to move their beliefs closer to the agent’s side of the spectrum.

    A news item is initially released to a small, random subgroup of agents, which must decide whether to share this news with their followers. An agent weighs the newsworthiness of the item and its credibility, and updates its belief based on how surprising or convincing the news is. 

    “They will make a cost-benefit analysis to see if, on average, this piece of news will move people closer to what they think or move them away. And we include a nominal cost for sharing. For instance, taking some action, if you are scrolling on social media, you have to stop to do that. Think of that as a cost. Or a reputation cost might come if I share something that is embarrassing. Everyone has this cost, so the more extreme and the more interesting the news is, the more you want to share it,” Jadbabaie says.

    If the news affirms the agent’s perspective and has persuasive power that outweighs the nominal cost, the agent will always share the news. But if an agent thinks the news item is something others may have already seen, the agent is disincentivized to share it.

    Since an agent’s willingness to share news is a product of its perspective and how persuasive the news is, the more extreme an agent’s perspective or the more surprising the news, the more likely the agent will share it.

    The researchers used this model to study how information spreads during a news cascade, which is an unbroken sharing chain that rapidly permeates the network.

    Connectivity and polarization

    The team found that when a network has high connectivity and the news is surprising, the credibility threshold for starting a news cascade is lower. High connectivity means that there are multiple connections between many users in the network.

    Likewise, when the network is largely polarized, there are plenty of agents with extreme views who want to share the news item, starting a news cascade. In both these instances, news with low credibility creates the largest cascades.

    “For any piece of news, there is a natural network speed limit, a range of connectivity, that facilitates good transmission of information where the size of the cascade is maximized by true news. But if you exceed that speed limit, you will get into situations where inaccurate news or news with low credibility has a larger cascade size,” Jadbabaie says.

    If the views of users in the network become more diverse, it is less likely that a poorly credible piece of news will spread more widely than the truth.

    Jadbabaie and his colleagues designed the agents in the network to behave rationally, so the model would better capture actions real humans might take if they want to persuade others.

    “Someone might say that is not why people share, and that is valid. Why people do certain things is a subject of intense debate in cognitive science, social psychology, neuroscience, economics, and political science,” he says. “Depending on your assumptions, you end up getting different results. But I feel like this assumption of persuasion being the motive is a natural assumption.”

    Their model also shows how costs can be manipulated to reduce the spread of false information. Agents make a cost-benefit analysis and won’t share news if the cost to do so outweighs the benefit of sharing.

    “We don’t make any policy prescriptions, but one thing this work suggests is that, perhaps, having some cost associated with sharing news is not a bad idea. The reason you get lots of these cascades is because the cost of sharing the news is actually very low,” he says.

    This work was supported by an Army Research Office Multidisciplinary University Research Initiative grant and a Vannevar Bush Fellowship from the Office of the Secretary of Defense. More

  • in

    New integrative computational neuroscience center established at MIT’s McGovern Institute

    With the tools of modern neuroscience, researchers can peer into the brain with unprecedented accuracy. Recording devices listen in on the electrical conversations between neurons, picking up the voices of hundreds of cells at a time. Genetic tools allow us to focus on specific types of neurons based on their molecular signatures. Microscopes zoom in to illuminate the brain’s circuitry, capturing thousands of images of elaborately branched dendrites. Functional MRIs detect changes in blood flow to map activity within a person’s brain, generating a complete picture by compiling hundreds of scans.

    This deluge of data provides insights into brain function and dynamics at different levels — molecules, cells, circuits, and behavior — but the insights remain compartmentalized in separate research silos for each level. An innovative new center at MIT’s McGovern Institute for Brain Research aims to leverage them into powerful revelations of the brain’s inner workings.

    The K. Lisa Yang Integrative Computational Neuroscience (ICoN) Center will create advanced mathematical models and computational tools to synthesize the deluge of data across scales and advance our understanding of the brain and mental health.

    The center, funded by a $24 million donation from philanthropist Lisa Yang and led by McGovern Institute Associate Investigator Ila Fiete, will take a collaborative approach to computational neuroscience, integrating cutting-edge modeling techniques and data from MIT labs to explain brain function at every level, from the molecular to the behavioral.

    “Our goal is that sophisticated, truly integrated computational models of the brain will make it possible to identify how ‘control knobs’ such as genes, proteins, chemicals, and environment drive thoughts and behavior, and to make inroads toward urgent unmet needs in understanding and treating brain disorders,” says Fiete, who is also a brain and cognitive sciences professor at MIT.

    “Driven by technologies that generate massive amounts of data, we are entering a new era of translational neuroscience research,” says Yang, whose philanthropic investment in MIT research now exceeds $130 million. “I am confident that the multidisciplinary expertise convened by the ICoN center will revolutionize how we synthesize this data and ultimately understand the brain in health and disease.”

    Connecting the data

    It is impossible to separate the molecules in the brain from their effects on behavior — although those aspects of neuroscience have traditionally been studied independently, by researchers with vastly different expertise. The ICoN Center will eliminate the divides, bringing together neuroscientists and software engineers to deal with all types of data about the brain.

    “The center’s highly collaborative structure, which is essential for unifying multiple levels of understanding, will enable us to recruit talented young scientists eager to revolutionize the field of computational neuroscience,” says Robert Desimone, director of the McGovern Institute. “It is our hope that the ICoN Center’s unique research environment will truly demonstrate a new academic research structure that catalyzes bold, creative research.”

    To foster interdisciplinary collaboration, every postdoc and engineer at the center will work with multiple faculty mentors. In order to attract young scientists and engineers to the field of computational neuroscience, the center will also provide four graduate fellowships to MIT students each year in perpetuity. Interacting closely with three scientific cores, engineers and fellows will develop computational models and technologies for analyzing molecular data, neural circuits, and behavior, such as tools to identify patterns in neural recordings or automate the analysis of human behavior to aid psychiatric diagnoses. These technologies and models will be instrumental in synthesizing data into knowledge and understanding.

    Center priorities

    In its first five years, the ICoN Center will prioritize four areas of investigation: episodic memory and exploration, including functions like navigation and spatial memory; complex or stereotypical behavior, such as the perseverative behaviors associated with autism and obsessive-compulsive disorder; cognition and attention; and sleep. Models of complex behavior will be created in collaboration with clinicians and researchers at Children’s Hospital of Philadelphia.

    The goal, Fiete says, is to model the neuronal interactions that underlie these functions so that researchers can predict what will happen when something changes — when certain neurons become more active or when a genetic mutation is introduced, for example. When paired with experimental data from MIT labs, the center’s models will help explain not just how these circuits work, but also how they are altered by genes, the environment, aging, and disease. These focus areas encompass circuits and behaviors often affected by psychiatric disorders and neurodegeneration, and models will give researchers new opportunities to explore their origins and potential treatment strategies.

    “Lisa Yang is focused on helping the scientific community realize its goals in translational research,” says Nergis Mavalvala, dean of the School of Science and the Curtis and Kathleen Marble Professor of Astrophysics. “With her generous support, we can accelerate the pace of research by connecting the data to the delivery of tangible results.” More