More stories

  • in

    This tiny chip can safeguard user data while enabling efficient computing on a smartphone

    Health-monitoring apps can help people manage chronic diseases or stay on track with fitness goals, using nothing more than a smartphone. However, these apps can be slow and energy-inefficient because the vast machine-learning models that power them must be shuttled between a smartphone and a central memory server.

    Engineers often speed things up using hardware that reduces the need to move so much data back and forth. While these machine-learning accelerators can streamline computation, they are susceptible to attackers who can steal secret information.

    To reduce this vulnerability, researchers from MIT and the MIT-IBM Watson AI Lab created a machine-learning accelerator that is resistant to the two most common types of attacks. Their chip can keep a user’s health records, financial information, or other sensitive data private while still enabling huge AI models to run efficiently on devices.

    The team developed several optimizations that enable strong security while only slightly slowing the device. Moreover, the added security does not impact the accuracy of computations. This machine-learning accelerator could be particularly beneficial for demanding AI applications like augmented and virtual reality or autonomous driving.

    While implementing the chip would make a device slightly more expensive and less energy-efficient, that is sometimes a worthwhile price to pay for security, says lead author Maitreyi Ashok, an electrical engineering and computer science (EECS) graduate student at MIT.

    “It is important to design with security in mind from the ground up. If you are trying to add even a minimal amount of security after a system has been designed, it is prohibitively expensive. We were able to effectively balance a lot of these tradeoffs during the design phase,” says Ashok.

    Her co-authors include Saurav Maji, an EECS graduate student; Xin Zhang and John Cohn of the MIT-IBM Watson AI Lab; and senior author Anantha Chandrakasan, MIT’s chief innovation and strategy officer, dean of the School of Engineering, and the Vannevar Bush Professor of EECS. The research will be presented at the IEEE Custom Integrated Circuits Conference.

    Side-channel susceptibility

    The researchers targeted a type of machine-learning accelerator called digital in-memory compute. A digital IMC chip performs computations inside a device’s memory, where pieces of a machine-learning model are stored after being moved over from a central server.

    The entire model is too big to store on the device, but by breaking it into pieces and reusing those pieces as much as possible, IMC chips reduce the amount of data that must be moved back and forth.

    But IMC chips can be susceptible to hackers. In a side-channel attack, a hacker monitors the chip’s power consumption and uses statistical techniques to reverse-engineer data as the chip computes. In a bus-probing attack, the hacker can steal bits of the model and dataset by probing the communication between the accelerator and the off-chip memory.

    Digital IMC speeds computation by performing millions of operations at once, but this complexity makes it tough to prevent attacks using traditional security measures, Ashok says.

    She and her collaborators took a three-pronged approach to blocking side-channel and bus-probing attacks.

    First, they employed a security measure where data in the IMC are split into random pieces. For instance, a bit zero might be split into three bits that still equal zero after a logical operation. The IMC never computes with all pieces in the same operation, so a side-channel attack could never reconstruct the real information.

    But for this technique to work, random bits must be added to split the data. Because digital IMC performs millions of operations at once, generating so many random bits would involve too much computing. For their chip, the researchers found a way to simplify computations, making it easier to effectively split data while eliminating the need for random bits.

    Second, they prevented bus-probing attacks using a lightweight cipher that encrypts the model stored in off-chip memory. This lightweight cipher only requires simple computations. In addition, they only decrypted the pieces of the model stored on the chip when necessary.

    Third, to improve security, they generated the key that decrypts the cipher directly on the chip, rather than moving it back and forth with the model. They generated this unique key from random variations in the chip that are introduced during manufacturing, using what is known as a physically unclonable function.

    “Maybe one wire is going to be a little bit thicker than another. We can use these variations to get zeros and ones out of a circuit. For every chip, we can get a random key that should be consistent because these random properties shouldn’t change significantly over time,” Ashok explains.

    They reused the memory cells on the chip, leveraging the imperfections in these cells to generate the key. This requires less computation than generating a key from scratch.

    “As security has become a critical issue in the design of edge devices, there is a need to develop a complete system stack focusing on secure operation. This work focuses on security for machine-learning workloads and describes a digital processor that uses cross-cutting optimization. It incorporates encrypted data access between memory and processor, approaches to preventing side-channel attacks using randomization, and exploiting variability to generate unique codes. Such designs are going to be critical in future mobile devices,” says Chandrakasan.

    Safety testing

    To test their chip, the researchers took on the role of hackers and tried to steal secret information using side-channel and bus-probing attacks.

    Even after making millions of attempts, they couldn’t reconstruct any real information or extract pieces of the model or dataset. The cipher also remained unbreakable. By contrast, it took only about 5,000 samples to steal information from an unprotected chip.

    The addition of security did reduce the energy efficiency of the accelerator, and it also required a larger chip area, which would make it more expensive to fabricate.

    The team is planning to explore methods that could reduce the energy consumption and size of their chip in the future, which would make it easier to implement at scale.

    “As it becomes too expensive, it becomes harder to convince someone that security is critical. Future work could explore these tradeoffs. Maybe we could make it a little less secure but easier to implement and less expensive,” Ashok says.

    The research is funded, in part, by the MIT-IBM Watson AI Lab, the National Science Foundation, and a Mathworks Engineering Fellowship. More

  • in

    Advancing technology for aquaculture

    According to the National Oceanic and Atmospheric Administration, aquaculture in the United States represents a $1.5 billion industry annually. Like land-based farming, shellfish aquaculture requires healthy seed production in order to maintain a sustainable industry. Aquaculture hatchery production of shellfish larvae — seeds — requires close monitoring to track mortality rates and assess health from the earliest stages of life. 

    Careful observation is necessary to inform production scheduling, determine effects of naturally occurring harmful bacteria, and ensure sustainable seed production. This is an essential step for shellfish hatcheries but is currently a time-consuming manual process prone to human error. 

    With funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), MIT Sea Grant is working with Associate Professor Otto Cordero of the MIT Department of Civil and Environmental Engineering, Professor Taskin Padir and Research Scientist Mark Zolotas at the Northeastern University Institute for Experiential Robotics, and others at the Aquaculture Research Corporation (ARC), and the Cape Cod Commercial Fishermen’s Alliance, to advance technology for the aquaculture industry. Located on Cape Cod, ARC is a leading shellfish hatchery, farm, and wholesaler that plays a vital role in providing high-quality shellfish seed to local and regional growers.

    Two MIT students have joined the effort this semester, working with Robert Vincent, MIT Sea Grant’s assistant director of advisory services, through the Undergraduate Research Opportunities Program (UROP). 

    First-year student Unyime Usua and sophomore Santiago Borrego are using microscopy images of shellfish seed from ARC to train machine learning algorithms that will help automate the identification and counting process. The resulting user-friendly image recognition tool aims to aid aquaculturists in differentiating and counting healthy, unhealthy, and dead shellfish larvae, improving accuracy and reducing time and effort.

    Vincent explains that AI is a powerful tool for environmental science that enables researchers, industry, and resource managers to address challenges that have long been pinch points for accurate data collection, analysis, predictions, and streamlining processes. “Funding support from programs like J-WAFS enable us to tackle these problems head-on,” he says. 

    ARC faces challenges with manually quantifying larvae classes, an important step in their seed production process. “When larvae are in their growing stages they are constantly being sized and counted,” explains Cheryl James, ARC larval/juvenile production manager. “This process is critical to encourage optimal growth and strengthen the population.” 

    Developing an automated identification and counting system will help to improve this step in the production process with time and cost benefits. “This is not an easy task,” says Vincent, “but with the guidance of Dr. Zolotas at the Northeastern University Institute for Experiential Robotics and the work of the UROP students, we have made solid progress.” 

    The UROP program benefits both researchers and students. Involving MIT UROP students in developing these types of systems provides insights into AI applications that they might not have considered, providing opportunities to explore, learn, and apply themselves while contributing to solving real challenges.

    Borrego saw this project as an opportunity to apply what he’d learned in class 6.390 (Introduction to Machine Learning) to a real-world issue. “I was starting to form an idea of how computers can see images and extract information from them,” he says. “I wanted to keep exploring that.”

    Usua decided to pursue the project because of the direct industry impacts it could have. “I’m pretty interested in seeing how we can utilize machine learning to make people’s lives easier. We are using AI to help biologists make this counting and identification process easier.” While Usua wasn’t familiar with aquaculture before starting this project, she explains, “Just hearing about the hatcheries that Dr. Vincent was telling us about, it was unfortunate that not a lot of people know what’s going on and the problems that they’re facing.”

    On Cape Cod alone, aquaculture is an $18 million per year industry. But the Massachusetts Division of Marine Fisheries estimates that hatcheries are only able to meet 70–80 percent of seed demand annually, which impacts local growers and economies. Through this project, the partners aim to develop technology that will increase seed production, advance industry capabilities, and help understand and improve the hatchery microbiome.

    Borrego explains the initial challenge of having limited data to work with. “Starting out, we had to go through and label all of the data, but going through that process helped me learn a lot.” In true MIT fashion, he shares his takeaway from the project: “Try to get the best out of what you’re given with the data you have to work with. You’re going to have to adapt and change your strategies depending on what you have.”

    Usua describes her experience going through the research process, communicating in a team, and deciding what approaches to take. “Research is a difficult and long process, but there is a lot to gain from it because it teaches you to look for things on your own and find your own solutions to problems.”

    In addition to increasing seed production and reducing the human labor required in the hatchery process, the collaborators expect this project to contribute to cost savings and technology integration to support one of the most underserved industries in the United States. 

    Borrego and Usua both plan to continue their work for a second semester with MIT Sea Grant. Borrego is interested in learning more about how technology can be used to protect the environment and wildlife. Usua says she hopes to explore more projects related to aquaculture. “It seems like there’s an infinite amount of ways to tackle these issues.” More

  • in

    Using deep learning to image the Earth’s planetary boundary layer

    Although the troposphere is often thought of as the closest layer of the atmosphere to the Earth’s surface, the planetary boundary layer (PBL) — the lowest layer of the troposphere — is actually the part that most significantly influences weather near the surface. In the 2018 planetary science decadal survey, the PBL was raised as an important scientific issue that has the potential to enhance storm forecasting and improve climate projections.  

    “The PBL is where the surface interacts with the atmosphere, including exchanges of moisture and heat that help lead to severe weather and a changing climate,” says Adam Milstein, a technical staff member in Lincoln Laboratory’s Applied Space Systems Group. “The PBL is also where humans live, and the turbulent movement of aerosols throughout the PBL is important for air quality that influences human health.” 

    Although vital for studying weather and climate, important features of the PBL, such as its height, are difficult to resolve with current technology. In the past four years, Lincoln Laboratory staff have been studying the PBL, focusing on two different tasks: using machine learning to make 3D-scanned profiles of the atmosphere, and resolving the vertical structure of the atmosphere more clearly in order to better predict droughts.  

    This PBL-focused research effort builds on more than a decade of related work on fast, operational neural network algorithms developed by Lincoln Laboratory for NASA missions. These missions include the Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission as well as Aqua, a satellite that collects data about Earth’s water cycle and observes variables such as ocean temperature, precipitation, and water vapor in the atmosphere. These algorithms retrieve temperature and humidity from the satellite instrument data and have been shown to significantly improve the accuracy and usable global coverage of the observations over previous approaches. For TROPICS, the algorithms help retrieve data that are used to characterize a storm’s rapidly evolving structures in near-real time, and for Aqua, it has helped increase forecasting models, drought monitoring, and fire prediction. 

    These operational algorithms for TROPICS and Aqua are based on classic “shallow” neural networks to maximize speed and simplicity, creating a one-dimensional vertical profile for each spectral measurement collected by the instrument over each location. While this approach has improved observations of the atmosphere down to the surface overall, including the PBL, laboratory staff determined that newer “deep” learning techniques that treat the atmosphere over a region of interest as a three-dimensional image are needed to improve PBL details further.

    “We hypothesized that deep learning and artificial intelligence (AI) techniques could improve on current approaches by incorporating a better statistical representation of 3D temperature and humidity imagery of the atmosphere into the solutions,” Milstein says. “But it took a while to figure out how to create the best dataset — a mix of real and simulated data; we needed to prepare to train these techniques.”

    The team collaborated with Joseph Santanello of the NASA Goddard Space Flight Center and William Blackwell, also of the Applied Space Systems Group, in a recent NASA-funded effort showing that these retrieval algorithms can improve PBL detail, including more accurate determination of the PBL height than the previous state of the art. 

    While improved knowledge of the PBL is broadly useful for increasing understanding of climate and weather, one key application is prediction of droughts. According to a Global Drought Snapshot report released last year, droughts are a pressing planetary issue that the global community needs to address. Lack of humidity near the surface, specifically at the level of the PBL, is the leading indicator of drought. While previous studies using remote-sensing techniques have examined the humidity of soil to determine drought risk, studying the atmosphere can help predict when droughts will happen.  

    In an effort funded by Lincoln Laboratory’s Climate Change Initiative, Milstein, along with laboratory staff member Michael Pieper, are working with scientists at NASA’s Jet Propulsion Laboratory (JPL) to use neural network techniques to improve drought prediction over the continental United States. While the work builds off of existing operational work JPL has done incorporating (in part) the laboratory’s operational “shallow” neural network approach for Aqua, the team believes that this work and the PBL-focused deep learning research work can be combined to further improve the accuracy of drought prediction. 

    “Lincoln Laboratory has been working with NASA for more than a decade on neural network algorithms for estimating temperature and humidity in the atmosphere from space-borne infrared and microwave instruments, including those on the Aqua spacecraft,” Milstein says. “Over that time, we have learned a lot about this problem by working with the science community, including learning about what scientific challenges remain. Our long experience working on this type of remote sensing with NASA scientists, as well as our experience with using neural network techniques, gave us a unique perspective.”

    According to Milstein, the next step for this project is to compare the deep learning results to datasets from the National Oceanic and Atmospheric Administration, NASA, and the Department of Energy collected directly in the PBL using radiosondes, a type of instrument flown on a weather balloon. “These direct measurements can be considered a kind of ‘ground truth’ to quantify the accuracy of the techniques we have developed,” Milstein says.

    This improved neural network approach holds promise to demonstrate drought prediction that can exceed the capabilities of existing indicators, Milstein says, and to be a tool that scientists can rely on for decades to come. More

  • in

    AI generates high-quality images 30 times faster in a single step

    In our current age of artificial intelligence, computers can generate their own “art” by way of diffusion models, iteratively adding structure to a noisy initial state until a clear image or video emerges. Diffusion models have suddenly grabbed a seat at everyone’s table: Enter a few words and experience instantaneous, dopamine-spiking dreamscapes at the intersection of reality and fantasy. Behind the scenes, it involves a complex, time-intensive process requiring numerous iterations for the algorithm to perfect the image.

    MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) researchers have introduced a new framework that simplifies the multi-step process of traditional diffusion models into a single step, addressing previous limitations. This is done through a type of teacher-student model: teaching a new computer model to mimic the behavior of more complicated, original models that generate images. The approach, known as distribution matching distillation (DMD), retains the quality of the generated images and allows for much faster generation. 

    “Our work is a novel method that accelerates current diffusion models such as Stable Diffusion and DALLE-3 by 30 times,” says Tianwei Yin, an MIT PhD student in electrical engineering and computer science, CSAIL affiliate, and the lead researcher on the DMD framework. “This advancement not only significantly reduces computational time but also retains, if not surpasses, the quality of the generated visual content. Theoretically, the approach marries the principles of generative adversarial networks (GANs) with those of diffusion models, achieving visual content generation in a single step — a stark contrast to the hundred steps of iterative refinement required by current diffusion models. It could potentially be a new generative modeling method that excels in speed and quality.”

    This single-step diffusion model could enhance design tools, enabling quicker content creation and potentially supporting advancements in drug discovery and 3D modeling, where promptness and efficacy are key.

    Distribution dreams

    DMD cleverly has two components. First, it uses a regression loss, which anchors the mapping to ensure a coarse organization of the space of images to make training more stable. Next, it uses a distribution matching loss, which ensures that the probability to generate a given image with the student model corresponds to its real-world occurrence frequency. To do this, it leverages two diffusion models that act as guides, helping the system understand the difference between real and generated images and making training the speedy one-step generator possible.

    The system achieves faster generation by training a new network to minimize the distribution divergence between its generated images and those from the training dataset used by traditional diffusion models. “Our key insight is to approximate gradients that guide the improvement of the new model using two diffusion models,” says Yin. “In this way, we distill the knowledge of the original, more complex model into the simpler, faster one, while bypassing the notorious instability and mode collapse issues in GANs.” 

    Yin and colleagues used pre-trained networks for the new student model, simplifying the process. By copying and fine-tuning parameters from the original models, the team achieved fast training convergence of the new model, which is capable of producing high-quality images with the same architectural foundation. “This enables combining with other system optimizations based on the original architecture to further accelerate the creation process,” adds Yin. 

    When put to the test against the usual methods, using a wide range of benchmarks, DMD showed consistent performance. On the popular benchmark of generating images based on specific classes on ImageNet, DMD is the first one-step diffusion technique that churns out pictures pretty much on par with those from the original, more complex models, rocking a super-close Fréchet inception distance (FID) score of just 0.3, which is impressive, since FID is all about judging the quality and diversity of generated images. Furthermore, DMD excels in industrial-scale text-to-image generation and achieves state-of-the-art one-step generation performance. There’s still a slight quality gap when tackling trickier text-to-image applications, suggesting there’s a bit of room for improvement down the line. 

    Additionally, the performance of the DMD-generated images is intrinsically linked to the capabilities of the teacher model used during the distillation process. In the current form, which uses Stable Diffusion v1.5 as the teacher model, the student inherits limitations such as rendering detailed depictions of text and small faces, suggesting that DMD-generated images could be further enhanced by more advanced teacher models. 

    “Decreasing the number of iterations has been the Holy Grail in diffusion models since their inception,” says Fredo Durand, MIT professor of electrical engineering and computer science, CSAIL principal investigator, and a lead author on the paper. “We are very excited to finally enable single-step image generation, which will dramatically reduce compute costs and accelerate the process.” 

    “Finally, a paper that successfully combines the versatility and high visual quality of diffusion models with the real-time performance of GANs,” says Alexei Efros, a professor of electrical engineering and computer science at the University of California at Berkeley who was not involved in this study. “I expect this work to open up fantastic possibilities for high-quality real-time visual editing.” 

    Yin and Durand’s fellow authors are MIT electrical engineering and computer science professor and CSAIL principal investigator William T. Freeman, as well as Adobe research scientists Michaël Gharbi SM ’15, PhD ’18; Richard Zhang; Eli Shechtman; and Taesung Park. Their work was supported, in part, by U.S. National Science Foundation grants (including one for the Institute for Artificial Intelligence and Fundamental Interactions), the Singapore Defense Science and Technology Agency, and by funding from Gwangju Institute of Science and Technology and Amazon. Their work will be presented at the Conference on Computer Vision and Pattern Recognition in June. More

  • in

    Using generative AI to improve software testing

    Generative AI is getting plenty of attention for its ability to create text and images. But those media represent only a fraction of the data that proliferate in our society today. Data are generated every time a patient goes through a medical system, a storm impacts a flight, or a person interacts with a software application.

    Using generative AI to create realistic synthetic data around those scenarios can help organizations more effectively treat patients, reroute planes, or improve software platforms — especially in scenarios where real-world data are limited or sensitive.

    For the last three years, the MIT spinout DataCebo has offered a generative software system called the Synthetic Data Vault to help organizations create synthetic data to do things like test software applications and train machine learning models.

    The Synthetic Data Vault, or SDV, has been downloaded more than 1 million times, with more than 10,000 data scientists using the open-source library for generating synthetic tabular data. The founders — Principal Research Scientist Kalyan Veeramachaneni and alumna Neha Patki ’15, SM ’16 — believe the company’s success is due to SDV’s ability to revolutionize software testing.

    SDV goes viral

    In 2016, Veeramachaneni’s group in the Data to AI Lab unveiled a suite of open-source generative AI tools to help organizations create synthetic data that matched the statistical properties of real data.

    Companies can use synthetic data instead of sensitive information in programs while still preserving the statistical relationships between datapoints. Companies can also use synthetic data to run new software through simulations to see how it performs before releasing it to the public.

    Veeramachaneni’s group came across the problem because it was working with companies that wanted to share their data for research.

    “MIT helps you see all these different use cases,” Patki explains. “You work with finance companies and health care companies, and all those projects are useful to formulate solutions across industries.”

    In 2020, the researchers founded DataCebo to build more SDV features for larger organizations. Since then, the use cases have been as impressive as they’ve been varied.

    With DataCebo’s new flight simulator, for instance, airlines can plan for rare weather events in a way that would be impossible using only historic data. In another application, SDV users synthesized medical records to predict health outcomes for patients with cystic fibrosis. A team from Norway recently used SDV to create synthetic student data to evaluate whether various admissions policies were meritocratic and free from bias.

    In 2021, the data science platform Kaggle hosted a competition for data scientists that used SDV to create synthetic data sets to avoid using proprietary data. Roughly 30,000 data scientists participated, building solutions and predicting outcomes based on the company’s realistic data.

    And as DataCebo has grown, it’s stayed true to its MIT roots: All of the company’s current employees are MIT alumni.

    Supercharging software testing

    Although their open-source tools are being used for a variety of use cases, the company is focused on growing its traction in software testing.

    “You need data to test these software applications,” Veeramachaneni says. “Traditionally, developers manually write scripts to create synthetic data. With generative models, created using SDV, you can learn from a sample of data collected and then sample a large volume of synthetic data (which has the same properties as real data), or create specific scenarios and edge cases, and use the data to test your application.”

    For example, if a bank wanted to test a program designed to reject transfers from accounts with no money in them, it would have to simulate many accounts simultaneously transacting. Doing that with data created manually would take a lot of time. With DataCebo’s generative models, customers can create any edge case they want to test.

    “It’s common for industries to have data that is sensitive in some capacity,” Patki says. “Often when you’re in a domain with sensitive data you’re dealing with regulations, and even if there aren’t legal regulations, it’s in companies’ best interest to be diligent about who gets access to what at which time. So, synthetic data is always better from a privacy perspective.”

    Scaling synthetic data

    Veeramachaneni believes DataCebo is advancing the field of what it calls synthetic enterprise data, or data generated from user behavior on large companies’ software applications.

    “Enterprise data of this kind is complex, and there is no universal availability of it, unlike language data,” Veeramachaneni says. “When folks use our publicly available software and report back if works on a certain pattern, we learn a lot of these unique patterns, and it allows us to improve our algorithms. From one perspective, we are building a corpus of these complex patterns, which for language and images is readily available. “

    DataCebo also recently released features to improve SDV’s usefulness, including tools to assess the “realism” of the generated data, called the SDMetrics library as well as a way to compare models’ performances called SDGym.

    “It’s about ensuring organizations trust this new data,” Veeramachaneni says. “[Our tools offer] programmable synthetic data, which means we allow enterprises to insert their specific insight and intuition to build more transparent models.”

    As companies in every industry rush to adopt AI and other data science tools, DataCebo is ultimately helping them do so in a way that is more transparent and responsible.

    “In the next few years, synthetic data from generative models will transform all data work,” Veeramachaneni says. “We believe 90 percent of enterprise operations can be done with synthetic data.” More

  • in

    Dealing with the limitations of our noisy world

    Tamara Broderick first set foot on MIT’s campus when she was a high school student, as a participant in the inaugural Women’s Technology Program. The monthlong summer academic experience gives young women a hands-on introduction to engineering and computer science.

    What is the probability that she would return to MIT years later, this time as a faculty member?

    That’s a question Broderick could probably answer quantitatively using Bayesian inference, a statistical approach to probability that tries to quantify uncertainty by continuously updating one’s assumptions as new data are obtained.

    In her lab at MIT, the newly tenured associate professor in the Department of Electrical Engineering and Computer Science (EECS) uses Bayesian inference to quantify uncertainty and measure the robustness of data analysis techniques.

    “I’ve always been really interested in understanding not just ‘What do we know from data analysis,’ but ‘How well do we know it?’” says Broderick, who is also a member of the Laboratory for Information and Decision Systems and the Institute for Data, Systems, and Society. “The reality is that we live in a noisy world, and we can’t always get exactly the data that we want. How do we learn from data but at the same time recognize that there are limitations and deal appropriately with them?”

    Broadly, her focus is on helping people understand the confines of the statistical tools available to them and, sometimes, working with them to craft better tools for a particular situation.

    For instance, her group recently collaborated with oceanographers to develop a machine-learning model that can make more accurate predictions about ocean currents. In another project, she and others worked with degenerative disease specialists on a tool that helps severely motor-impaired individuals utilize a computer’s graphical user interface by manipulating a single switch.

    A common thread woven through her work is an emphasis on collaboration.

    “Working in data analysis, you get to hang out in everybody’s backyard, so to speak. You really can’t get bored because you can always be learning about some other field and thinking about how we can apply machine learning there,” she says.

    Hanging out in many academic “backyards” is especially appealing to Broderick, who struggled even from a young age to narrow down her interests.

    A math mindset

    Growing up in a suburb of Cleveland, Ohio, Broderick had an interest in math for as long as she can remember. She recalls being fascinated by the idea of what would happen if you kept adding a number to itself, starting with 1+1=2 and then 2+2=4.

    “I was maybe 5 years old, so I didn’t know what ‘powers of two’ were or anything like that. I was just really into math,” she says.

    Her father recognized her interest in the subject and enrolled her in a Johns Hopkins program called the Center for Talented Youth, which gave Broderick the opportunity to take three-week summer classes on a range of subjects, from astronomy to number theory to computer science.

    Later, in high school, she conducted astrophysics research with a postdoc at Case Western University. In the summer of 2002, she spent four weeks at MIT as a member of the first class of the Women’s Technology Program.

    She especially enjoyed the freedom offered by the program, and its focus on using intuition and ingenuity to achieve high-level goals. For instance, the cohort was tasked with building a device with LEGOs that they could use to biopsy a grape suspended in Jell-O.

    The program showed her how much creativity is involved in engineering and computer science, and piqued her interest in pursuing an academic career.

    “But when I got into college at Princeton, I could not decide — math, physics, computer science — they all seemed super-cool. I wanted to do all of it,” she says.

    She settled on pursuing an undergraduate math degree but took all the physics and computer science courses she could cram into her schedule.

    Digging into data analysis

    After receiving a Marshall Scholarship, Broderick spent two years at Cambridge University in the United Kingdom, earning a master of advanced study in mathematics and a master of philosophy in physics.

    In the UK, she took a number of statistics and data analysis classes, including her first class on Bayesian data analysis in the field of machine learning.

    It was a transformative experience, she recalls.

    “During my time in the U.K., I realized that I really like solving real-world problems that matter to people, and Bayesian inference was being used in some of the most important problems out there,” she says.

    Back in the U.S., Broderick headed to the University of California at Berkeley, where she joined the lab of Professor Michael I. Jordan as a grad student. She earned a PhD in statistics with a focus on Bayesian data analysis. 

    She decided to pursue a career in academia and was drawn to MIT by the collaborative nature of the EECS department and by how passionate and friendly her would-be colleagues were.

    Her first impressions panned out, and Broderick says she has found a community at MIT that helps her be creative and explore hard, impactful problems with wide-ranging applications.

    “I’ve been lucky to work with a really amazing set of students and postdocs in my lab — brilliant and hard-working people whose hearts are in the right place,” she says.

    One of her team’s recent projects involves a collaboration with an economist who studies the use of microcredit, or the lending of small amounts of money at very low interest rates, in impoverished areas.

    The goal of microcredit programs is to raise people out of poverty. Economists run randomized control trials of villages in a region that receive or don’t receive microcredit. They want to generalize the study results, predicting the expected outcome if one applies microcredit to other villages outside of their study.

    But Broderick and her collaborators have found that results of some microcredit studies can be very brittle. Removing one or a few data points from the dataset can completely change the results. One issue is that researchers often use empirical averages, where a few very high or low data points can skew the results.

    Using machine learning, she and her collaborators developed a method that can determine how many data points must be dropped to change the substantive conclusion of the study. With their tool, a scientist can see how brittle the results are.

    “Sometimes dropping a very small fraction of data can change the major results of a data analysis, and then we might worry how far those conclusions generalize to new scenarios. Are there ways we can flag that for people? That is what we are getting at with this work,” she explains.

    At the same time, she is continuing to collaborate with researchers in a range of fields, such as genetics, to understand the pros and cons of different machine-learning techniques and other data analysis tools.

    Happy trails

    Exploration is what drives Broderick as a researcher, and it also fuels one of her passions outside the lab. She and her husband enjoy collecting patches they earn by hiking all the trails in a park or trail system.

    “I think my hobby really combines my interests of being outdoors and spreadsheets,” she says. “With these hiking patches, you have to explore everything and then you see areas you wouldn’t normally see. It is adventurous, in that way.”

    They’ve discovered some amazing hikes they would never have known about, but also embarked on more than a few “total disaster hikes,” she says. But each hike, whether a hidden gem or an overgrown mess, offers its own rewards.

    And just like in her research, curiosity, open-mindedness, and a passion for problem-solving have never led her astray. More

  • in

    Startup accelerates progress toward light-speed computing

    Our ability to cram ever-smaller transistors onto a chip has enabled today’s age of ubiquitous computing. But that approach is finally running into limits, with some experts declaring an end to Moore’s Law and a related principle, known as Dennard’s Scaling.

    Those developments couldn’t be coming at a worse time. Demand for computing power has skyrocketed in recent years thanks in large part to the rise of artificial intelligence, and it shows no signs of slowing down.

    Now Lightmatter, a company founded by three MIT alumni, is continuing the remarkable progress of computing by rethinking the lifeblood of the chip. Instead of relying solely on electricity, the company also uses light for data processing and transport. The company’s first two products, a chip specializing in artificial intelligence operations and an interconnect that facilitates data transfer between chips, use both photons and electrons to drive more efficient operations.

    “The two problems we are solving are ‘How do chips talk?’ and ‘How do you do these [AI] calculations?’” Lightmatter co-founder and CEO Nicholas Harris PhD ’17 says. “With our first two products, Envise and Passage, we’re addressing both of those questions.”

    In a nod to the size of the problem and the demand for AI, Lightmatter raised just north of $300 million in 2023 at a valuation of $1.2 billion. Now the company is demonstrating its technology with some of the largest technology companies in the world in hopes of reducing the massive energy demand of data centers and AI models.

    “We’re going to enable platforms on top of our interconnect technology that are made up of hundreds of thousands of next-generation compute units,” Harris says. “That simply wouldn’t be possible without the technology that we’re building.”

    From idea to $100K

    Prior to MIT, Harris worked at the semiconductor company Micron Technology, where he studied the fundamental devices behind integrated chips. The experience made him see how the traditional approach for improving computer performance — cramming more transistors onto each chip — was hitting its limits.

    “I saw how the roadmap for computing was slowing, and I wanted to figure out how I could continue it,” Harris says. “What approaches can augment computers? Quantum computing and photonics were two of those pathways.”

    Harris came to MIT to work on photonic quantum computing for his PhD under Dirk Englund, an associate professor in the Department of Electrical Engineering and Computer Science. As part of that work, he built silicon-based integrated photonic chips that could send and process information using light instead of electricity.

    The work led to dozens of patents and more than 80 research papers in prestigious journals like Nature. But another technology also caught Harris’s attention at MIT.

    “I remember walking down the hall and seeing students just piling out of these auditorium-sized classrooms, watching relayed live videos of lectures to see professors teach deep learning,” Harris recalls, referring to the artificial intelligence technique. “Everybody on campus knew that deep learning was going to be a huge deal, so I started learning more about it, and we realized that the systems I was building for photonic quantum computing could actually be leveraged to do deep learning.”

    Harris had planned to become a professor after his PhD, but he realized he could attract more funding and innovate more quickly through a startup, so he teamed up with Darius Bunandar PhD ’18, who was also studying in Englund’s lab, and Thomas Graham MBA ’18. The co-founders successfully launched into the startup world by winning the 2017 MIT $100K Entrepreneurship Competition.

    Seeing the light

    Lightmatter’s Envise chip takes the part of computing that electrons do well, like memory, and combines it with what light does well, like performing the massive matrix multiplications of deep-learning models.

    “With photonics, you can perform multiple calculations at the same time because the data is coming in on different colors of light,” Harris explains. “In one color, you could have a photo of a dog. In another color, you could have a photo of a cat. In another color, maybe a tree, and you could have all three of those operations going through the same optical computing unit, this matrix accelerator, at the same time. That drives up operations per area, and it reuses the hardware that’s there, driving up energy efficiency.”

    Passage takes advantage of light’s latency and bandwidth advantages to link processors in a manner similar to how fiber optic cables use light to send data over long distances. It also enables chips as big as entire wafers to act as a single processor. Sending information between chips is central to running the massive server farms that power cloud computing and run AI systems like ChatGPT.

    Both products are designed to bring energy efficiencies to computing, which Harris says are needed to keep up with rising demand without bringing huge increases in power consumption.

    “By 2040, some predict that around 80 percent of all energy usage on the planet will be devoted to data centers and computing, and AI is going to be a huge fraction of that,” Harris says. “When you look at computing deployments for training these large AI models, they’re headed toward using hundreds of megawatts. Their power usage is on the scale of cities.”

    Lightmatter is currently working with chipmakers and cloud service providers for mass deployment. Harris notes that because the company’s equipment runs on silicon, it can be produced by existing semiconductor fabrication facilities without massive changes in process.

    The ambitious plans are designed to open up a new path forward for computing that would have huge implications for the environment and economy.

    “We’re going to continue looking at all of the pieces of computers to figure out where light can accelerate them, make them more energy efficient, and faster, and we’re going to continue to replace those parts,” Harris says. “Right now, we’re focused on interconnect with Passage and on compute with Envise. But over time, we’re going to build out the next generation of computers, and it’s all going to be centered around light.” More

  • in

    New AI model could streamline operations in a robotic warehouse

    Hundreds of robots zip back and forth across the floor of a colossal robotic warehouse, grabbing items and delivering them to human workers for packing and shipping. Such warehouses are increasingly becoming part of the supply chain in many industries, from e-commerce to automotive production.

    However, getting 800 robots to and from their destinations efficiently while keeping them from crashing into each other is no easy task. It is such a complex problem that even the best path-finding algorithms struggle to keep up with the breakneck pace of e-commerce or manufacturing. 

    In a sense, these robots are like cars trying to navigate a crowded city center. So, a group of MIT researchers who use AI to mitigate traffic congestion applied ideas from that domain to tackle this problem.

    They built a deep-learning model that encodes important information about the warehouse, including the robots, planned paths, tasks, and obstacles, and uses it to predict the best areas of the warehouse to decongest to improve overall efficiency.

    Their technique divides the warehouse robots into groups, so these smaller groups of robots can be decongested faster with traditional algorithms used to coordinate robots. In the end, their method decongests the robots nearly four times faster than a strong random search method.

    In addition to streamlining warehouse operations, this deep learning approach could be used in other complex planning tasks, like computer chip design or pipe routing in large buildings.

    “We devised a new neural network architecture that is actually suitable for real-time operations at the scale and complexity of these warehouses. It can encode hundreds of robots in terms of their trajectories, origins, destinations, and relationships with other robots, and it can do this in an efficient manner that reuses computation across groups of robots,” says Cathy Wu, the Gilbert W. Winslow Career Development Assistant Professor in Civil and Environmental Engineering (CEE), and a member of a member of the Laboratory for Information and Decision Systems (LIDS) and the Institute for Data, Systems, and Society (IDSS).

    Wu, senior author of a paper on this technique, is joined by lead author Zhongxia Yan, a graduate student in electrical engineering and computer science. The work will be presented at the International Conference on Learning Representations.

    Robotic Tetris

    From a bird’s eye view, the floor of a robotic e-commerce warehouse looks a bit like a fast-paced game of “Tetris.”

    When a customer order comes in, a robot travels to an area of the warehouse, grabs the shelf that holds the requested item, and delivers it to a human operator who picks and packs the item. Hundreds of robots do this simultaneously, and if two robots’ paths conflict as they cross the massive warehouse, they might crash.

    Traditional search-based algorithms avoid potential crashes by keeping one robot on its course and replanning a trajectory for the other. But with so many robots and potential collisions, the problem quickly grows exponentially.

    “Because the warehouse is operating online, the robots are replanned about every 100 milliseconds. That means that every second, a robot is replanned 10 times. So, these operations need to be very fast,” Wu says.

    Because time is so critical during replanning, the MIT researchers use machine learning to focus the replanning on the most actionable areas of congestion — where there exists the most potential to reduce the total travel time of robots.

    Wu and Yan built a neural network architecture that considers smaller groups of robots at the same time. For instance, in a warehouse with 800 robots, the network might cut the warehouse floor into smaller groups that contain 40 robots each.

    Then, it predicts which group has the most potential to improve the overall solution if a search-based solver were used to coordinate trajectories of robots in that group.

    An iterative process, the overall algorithm picks the most promising robot group with the neural network, decongests the group with the search-based solver, then picks the next most promising group with the neural network, and so on.

    Considering relationships

    The neural network can reason about groups of robots efficiently because it captures complicated relationships that exist between individual robots. For example, even though one robot may be far away from another initially, their paths could still cross during their trips.

    The technique also streamlines computation by encoding constraints only once, rather than repeating the process for each subproblem. For instance, in a warehouse with 800 robots, decongesting a group of 40 robots requires holding the other 760 robots as constraints. Other approaches require reasoning about all 800 robots once per group in each iteration.

    Instead, the researchers’ approach only requires reasoning about the 800 robots once across all groups in each iteration.

    “The warehouse is one big setting, so a lot of these robot groups will have some shared aspects of the larger problem. We designed our architecture to make use of this common information,” she adds.

    They tested their technique in several simulated environments, including some set up like warehouses, some with random obstacles, and even maze-like settings that emulate building interiors.

    By identifying more effective groups to decongest, their learning-based approach decongests the warehouse up to four times faster than strong, non-learning-based approaches. Even when they factored in the additional computational overhead of running the neural network, their approach still solved the problem 3.5 times faster.

    In the future, the researchers want to derive simple, rule-based insights from their neural model, since the decisions of the neural network can be opaque and difficult to interpret. Simpler, rule-based methods could also be easier to implement and maintain in actual robotic warehouse settings.

    “This approach is based on a novel architecture where convolution and attention mechanisms interact effectively and efficiently. Impressively, this leads to being able to take into account the spatiotemporal component of the constructed paths without the need of problem-specific feature engineering. The results are outstanding: Not only is it possible to improve on state-of-the-art large neighborhood search methods in terms of quality of the solution and speed, but the model generalizes to unseen cases wonderfully,” says Andrea Lodi, the Andrew H. and Ann R. Tisch Professor at Cornell Tech, and who was not involved with this research.

    This work was supported by Amazon and the MIT Amazon Science Hub. More