More stories

  • in

    How an archeological approach can help leverage biased data in AI to improve medicine

    The classic computer science adage “garbage in, garbage out” lacks nuance when it comes to understanding biased medical data, argue computer science and bioethics professors from MIT, Johns Hopkins University, and the Alan Turing Institute in a new opinion piece published in a recent edition of the New England Journal of Medicine (NEJM). The rising popularity of artificial intelligence has brought increased scrutiny to the matter of biased AI models resulting in algorithmic discrimination, which the White House Office of Science and Technology identified as a key issue in their recent Blueprint for an AI Bill of Rights. 

    When encountering biased data, particularly for AI models used in medical settings, the typical response is to either collect more data from underrepresented groups or generate synthetic data making up for missing parts to ensure that the model performs equally well across an array of patient populations. But the authors argue that this technical approach should be augmented with a sociotechnical perspective that takes both historical and current social factors into account. By doing so, researchers can be more effective in addressing bias in public health. 

    “The three of us had been discussing the ways in which we often treat issues with data from a machine learning perspective as irritations that need to be managed with a technical solution,” recalls co-author Marzyeh Ghassemi, an assistant professor in electrical engineering and computer science and an affiliate of the Abdul Latif Jameel Clinic for Machine Learning in Health (Jameel Clinic), the Computer Science and Artificial Intelligence Laboratory (CSAIL), and Institute of Medical Engineering and Science (IMES). “We had used analogies of data as an artifact that gives a partial view of past practices, or a cracked mirror holding up a reflection. In both cases the information is perhaps not entirely accurate or favorable: Maybe we think that we behave in certain ways as a society — but when you actually look at the data, it tells a different story. We might not like what that story is, but once you unearth an understanding of the past you can move forward and take steps to address poor practices.” 

    Data as artifact 

    In the paper, titled “Considering Biased Data as Informative Artifacts in AI-Assisted Health Care,” Ghassemi, Kadija Ferryman, and Maxine Mackintosh make the case for viewing biased clinical data as “artifacts” in the same way anthropologists or archeologists would view physical objects: pieces of civilization-revealing practices, belief systems, and cultural values — in the case of the paper, specifically those that have led to existing inequities in the health care system. 

    For example, a 2019 study showed that an algorithm widely considered to be an industry standard used health-care expenditures as an indicator of need, leading to the erroneous conclusion that sicker Black patients require the same level of care as healthier white patients. What researchers found was algorithmic discrimination failing to account for unequal access to care.  

    In this instance, rather than viewing biased datasets or lack of data as problems that only require disposal or fixing, Ghassemi and her colleagues recommend the “artifacts” approach as a way to raise awareness around social and historical elements influencing how data are collected and alternative approaches to clinical AI development. 

    “If the goal of your model is deployment in a clinical setting, you should engage a bioethicist or a clinician with appropriate training reasonably early on in problem formulation,” says Ghassemi. “As computer scientists, we often don’t have a complete picture of the different social and historical factors that have gone into creating data that we’ll be using. We need expertise in discerning when models generalized from existing data may not work well for specific subgroups.” 

    When more data can actually harm performance 

    The authors acknowledge that one of the more challenging aspects of implementing an artifact-based approach is being able to assess whether data have been racially corrected: i.e., using white, male bodies as the conventional standard that other bodies are measured against. The opinion piece cites an example from the Chronic Kidney Disease Collaboration in 2021, which developed a new equation to measure kidney function because the old equation had previously been “corrected” under the blanket assumption that Black people have higher muscle mass. Ghassemi says that researchers should be prepared to investigate race-based correction as part of the research process. 

    In another recent paper accepted to this year’s International Conference on Machine Learning co-authored by Ghassemi’s PhD student Vinith Suriyakumar and University of California at San Diego Assistant Professor Berk Ustun, the researchers found that assuming the inclusion of personalized attributes like self-reported race improve the performance of ML models can actually lead to worse risk scores, models, and metrics for minority and minoritized populations.  

    “There’s no single right solution for whether or not to include self-reported race in a clinical risk score. Self-reported race is a social construct that is both a proxy for other information, and deeply proxied itself in other medical data. The solution needs to fit the evidence,” explains Ghassemi. 

    How to move forward 

    This is not to say that biased datasets should be enshrined, or biased algorithms don’t require fixing — quality training data is still key to developing safe, high-performance clinical AI models, and the NEJM piece highlights the role of the National Institutes of Health (NIH) in driving ethical practices.  

    “Generating high-quality, ethically sourced datasets is crucial for enabling the use of next-generation AI technologies that transform how we do research,” NIH acting director Lawrence Tabak stated in a press release when the NIH announced its $130 million Bridge2AI Program last year. Ghassemi agrees, pointing out that the NIH has “prioritized data collection in ethical ways that cover information we have not previously emphasized the value of in human health — such as environmental factors and social determinants. I’m very excited about their prioritization of, and strong investments towards, achieving meaningful health outcomes.” 

    Elaine Nsoesie, an associate professor at the Boston University of Public Health, believes there are many potential benefits to treating biased datasets as artifacts rather than garbage, starting with the focus on context. “Biases present in a dataset collected for lung cancer patients in a hospital in Uganda might be different from a dataset collected in the U.S. for the same patient population,” she explains. “In considering local context, we can train algorithms to better serve specific populations.” Nsoesie says that understanding the historical and contemporary factors shaping a dataset can make it easier to identify discriminatory practices that might be coded in algorithms or systems in ways that are not immediately obvious. She also notes that an artifact-based approach could lead to the development of new policies and structures ensuring that the root causes of bias in a particular dataset are eliminated. 

    “People often tell me that they are very afraid of AI, especially in health. They’ll say, ‘I’m really scared of an AI misdiagnosing me,’ or ‘I’m concerned it will treat me poorly,’” Ghassemi says. “I tell them, you shouldn’t be scared of some hypothetical AI in health tomorrow, you should be scared of what health is right now. If we take a narrow technical view of the data we extract from systems, we could naively replicate poor practices. That’s not the only option — realizing there is a problem is our first step towards a larger opportunity.”  More

  • in

    Bringing the social and ethical responsibilities of computing to the forefront

    There has been a remarkable surge in the use of algorithms and artificial intelligence to address a wide range of problems and challenges. While their adoption, particularly with the rise of AI, is reshaping nearly every industry sector, discipline, and area of research, such innovations often expose unexpected consequences that involve new norms, new expectations, and new rules and laws.

    To facilitate deeper understanding, the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative in the MIT Schwarzman College of Computing, recently brought together social scientists and humanists with computer scientists, engineers, and other computing faculty for an exploration of the ways in which the broad applicability of algorithms and AI has presented both opportunities and challenges in many aspects of society.

    “The very nature of our reality is changing. AI has the ability to do things that until recently were solely the realm of human intelligence — things that can challenge our understanding of what it means to be human,” remarked Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing, in his opening address at the inaugural SERC Symposium. “This poses philosophical, conceptual, and practical questions on a scale not experienced since the start of the Enlightenment. In the face of such profound change, we need new conceptual maps for navigating the change.”

    The symposium offered a glimpse into the vision and activities of SERC in both research and education. “We believe our responsibility with SERC is to educate and equip our students and enable our faculty to contribute to responsible technology development and deployment,” said Georgia Perakis, the William F. Pounds Professor of Management in the MIT Sloan School of Management, co-associate dean of SERC, and the lead organizer of the symposium. “We’re drawing from the many strengths and diversity of disciplines across MIT and beyond and bringing them together to gain multiple viewpoints.”

    Through a succession of panels and sessions, the symposium delved into a variety of topics related to the societal and ethical dimensions of computing. In addition, 37 undergraduate and graduate students from a range of majors, including urban studies and planning, political science, mathematics, biology, electrical engineering and computer science, and brain and cognitive sciences, participated in a poster session to exhibit their research in this space, covering such topics as quantum ethics, AI collusion in storage markets, computing waste, and empowering users on social platforms for better content credibility.

    Showcasing a diversity of work

    In three sessions devoted to themes of beneficent and fair computing, equitable and personalized health, and algorithms and humans, the SERC Symposium showcased work by 12 faculty members across these domains.

    One such project from a multidisciplinary team of archaeologists, architects, digital artists, and computational social scientists aimed to preserve endangered heritage sites in Afghanistan with digital twins. The project team produced highly detailed interrogable 3D models of the heritage sites, in addition to extended reality and virtual reality experiences, as learning resources for audiences that cannot access these sites.

    In a project for the United Network for Organ Sharing, researchers showed how they used applied analytics to optimize various facets of an organ allocation system in the United States that is currently undergoing a major overhaul in order to make it more efficient, equitable, and inclusive for different racial, age, and gender groups, among others.

    Another talk discussed an area that has not yet received adequate public attention: the broader implications for equity that biased sensor data holds for the next generation of models in computing and health care.

    A talk on bias in algorithms considered both human bias and algorithmic bias, and the potential for improving results by taking into account differences in the nature of the two kinds of bias.

    Other highlighted research included the interaction between online platforms and human psychology; a study on whether decision-makers make systemic prediction mistakes on the available information; and an illustration of how advanced analytics and computation can be leveraged to inform supply chain management, operations, and regulatory work in the food and pharmaceutical industries.

    Improving the algorithms of tomorrow

    “Algorithms are, without question, impacting every aspect of our lives,” said Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science, in kicking off a panel she moderated on the implications of data and algorithms.

    “Whether it’s in the context of social media, online commerce, automated tasks, and now a much wider range of creative interactions with the advent of generative AI tools and large language models, there’s little doubt that much more is to come,” Ozdaglar said. “While the promise is evident to all of us, there’s a lot to be concerned as well. This is very much time for imaginative thinking and careful deliberation to improve the algorithms of tomorrow.”

    Turning to the panel, Ozdaglar asked experts from computing, social science, and data science for insights on how to understand what is to come and shape it to enrich outcomes for the majority of humanity.

    Sarah Williams, associate professor of technology and urban planning at MIT, emphasized the critical importance of comprehending the process of how datasets are assembled, as data are the foundation for all models. She also stressed the need for research to address the potential implication of biases in algorithms that often find their way in through their creators and the data used in their development. “It’s up to us to think about our own ethical solutions to these problems,” she said. “Just as it’s important to progress with the technology, we need to start the field of looking at these questions of what biases are in the algorithms? What biases are in the data, or in that data’s journey?”

    Shifting focus to generative models and whether the development and use of these technologies should be regulated, the panelists — which also included MIT’s Srini Devadas, professor of electrical engineering and computer science, John Horton, professor of information technology, and Simon Johnson, professor of entrepreneurship — all concurred that regulating open-source algorithms, which are publicly accessible, would be difficult given that regulators are still catching up and struggling to even set guardrails for technology that is now 20 years old.

    Returning to the question of how to effectively regulate the use of these technologies, Johnson proposed a progressive corporate tax system as a potential solution. He recommends basing companies’ tax payments on their profits, especially for large corporations whose massive earnings go largely untaxed due to offshore banking. By doing so, Johnson said that this approach can serve as a regulatory mechanism that discourages companies from trying to “own the entire world” by imposing disincentives.

    The role of ethics in computing education

    As computing continues to advance with no signs of slowing down, it is critical to educate students to be intentional in the social impact of the technologies they will be developing and deploying into the world. But can one actually be taught such things? If so, how?

    Caspar Hare, professor of philosophy at MIT and co-associate dean of SERC, posed this looming question to faculty on a panel he moderated on the role of ethics in computing education. All experienced in teaching ethics and thinking about the social implications of computing, each panelist shared their perspective and approach.

    A strong advocate for the importance of learning from history, Eden Medina, associate professor of science, technology, and society at MIT, said that “often the way we frame computing is that everything is new. One of the things that I do in my teaching is look at how people have confronted these issues in the past and try to draw from them as a way to think about possible ways forward.” Medina regularly uses case studies in her classes and referred to a paper written by Yale University science historian Joanna Radin on the Pima Indian Diabetes Dataset that raised ethical issues on the history of that particular collection of data that many don’t consider as an example of how decisions around technology and data can grow out of very specific contexts.

    Milo Phillips-Brown, associate professor of philosophy at Oxford University, talked about the Ethical Computing Protocol that he co-created while he was a SERC postdoc at MIT. The protocol, a four-step approach to building technology responsibly, is designed to train computer science students to think in a better and more accurate way about the social implications of technology by breaking the process down into more manageable steps. “The basic approach that we take very much draws on the fields of value-sensitive design, responsible research and innovation, participatory design as guiding insights, and then is also fundamentally interdisciplinary,” he said.

    Fields such as biomedicine and law have an ethics ecosystem that distributes the function of ethical reasoning in these areas. Oversight and regulation are provided to guide front-line stakeholders and decision-makers when issues arise, as are training programs and access to interdisciplinary expertise that they can draw from. “In this space, we have none of that,” said John Basl, associate professor of philosophy at Northeastern University. “For current generations of computer scientists and other decision-makers, we’re actually making them do the ethical reasoning on their own.” Basl commented further that teaching core ethical reasoning skills across the curriculum, not just in philosophy classes, is essential, and that the goal shouldn’t be for every computer scientist be a professional ethicist, but for them to know enough of the landscape to be able to ask the right questions and seek out the relevant expertise and resources that exists.

    After the final session, interdisciplinary groups of faculty, students, and researchers engaged in animated discussions related to the issues covered throughout the day during a reception that marked the conclusion of the symposium. More