More stories

  • in

    Large language models help decipher clinical notes

    Electronic health records (EHRs) need a new public relations manager. Ten years ago, the U.S. government passed a law that required hospitals to digitize their health records with the intent of improving and streamlining care. The enormous amount of information in these now-digital records could be used to answer very specific questions beyond the scope of clinical trials: What’s the right dose of this medication for patients with this height and weight? What about patients with a specific genomic profile?

    Unfortunately, most of the data that could answer these questions is trapped in doctor’s notes, full of jargon and abbreviations. These notes are hard for computers to understand using current techniques — extracting information requires training multiple machine learning models. Models trained for one hospital, also, don’t work well at others, and training each model requires domain experts to label lots of data, a time-consuming and expensive process. 

    An ideal system would use a single model that can extract many types of information, work well at multiple hospitals, and learn from a small amount of labeled data. But how? Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) believed that to disentangle the data, they needed to call on something bigger: large language models. To pull that important medical information, they used a very big, GPT-3 style model to do tasks like expand overloaded jargon and acronyms and extract medication regimens. 

    For example, the system takes an input, which in this case is a clinical note, “prompts” the model with a question about the note, such as “expand this abbreviation, C-T-A.” The system returns an output such as “clear to auscultation,” as opposed to say, a CT angiography. The objective of extracting this clean data, the team says, is to eventually enable more personalized clinical recommendations. 

    Medical data is, understandably, a pretty tricky resource to navigate freely. There’s plenty of red tape around using public resources for testing the performance of large models because of data use restrictions, so the team decided to scrape together their own. Using a set of short, publicly available clinical snippets, they cobbled together a small dataset to enable evaluation of the extraction performance of large language models. 

    “It’s challenging to develop a single general-purpose clinical natural language processing system that will solve everyone’s needs and be robust to the huge variation seen across health datasets. As a result, until today, most clinical notes are not used in downstream analyses or for live decision support in electronic health records. These large language model approaches could potentially transform clinical natural language processing,” says David Sontag, MIT professor of electrical engineering and computer science, principal investigator in CSAIL and the Institute for Medical Engineering and Science, and supervising author on a paper about the work, which will be presented at the Conference on Empirical Methods in Natural Language Processing. “The research team’s advances in zero-shot clinical information extraction makes scaling possible. Even if you have hundreds of different use cases, no problem — you can build each model with a few minutes of work, versus having to label a ton of data for that particular task.”

    For example, without any labels at all, the researchers found these models could achieve 86 percent accuracy at expanding overloaded acronyms, and the team developed additional methods to boost this further to 90 percent accuracy, with still no labels required.

    Imprisoned in an EHR 

    Experts have been steadily building up large language models (LLMs) for quite some time, but they burst onto the mainstream with GPT-3’s widely covered ability to complete sentences. These LLMs are trained on a huge amount of text from the internet to finish sentences and predict the next most likely word. 

    While previous, smaller models like earlier GPT iterations or BERT have pulled off a good performance for extracting medical data, they still require substantial manual data-labeling effort. 

    For example, a note, “pt will dc vanco due to n/v” means that this patient (pt) was taking the antibiotic vancomycin (vanco) but experienced nausea and vomiting (n/v) severe enough for the care team to discontinue (dc) the medication. The team’s research avoids the status quo of training separate machine learning models for each task (extracting medication, side effects from the record, disambiguating common abbreviations, etc). In addition to expanding abbreviations, they investigated four other tasks, including if the models could parse clinical trials and extract detail-rich medication regimens.  

    “Prior work has shown that these models are sensitive to the prompt’s precise phrasing. Part of our technical contribution is a way to format the prompt so that the model gives you outputs in the correct format,” says Hunter Lang, CSAIL PhD student and author on the paper. “For these extraction problems, there are structured output spaces. The output space is not just a string. It can be a list. It can be a quote from the original input. So there’s more structure than just free text. Part of our research contribution is encouraging the model to give you an output with the correct structure. That significantly cuts down on post-processing time.”

    The approach can’t be applied to out-of-the-box health data at a hospital: that requires sending private patient information across the open internet to an LLM provider like OpenAI. The authors showed that it’s possible to work around this by distilling the model into a smaller one that could be used on-site.

    The model — sometimes just like humans — is not always beholden to the truth. Here’s what a potential problem might look like: Let’s say you’re asking the reason why someone took medication. Without proper guardrails and checks, the model might just output the most common reason for that medication, if nothing is explicitly mentioned in the note. This led to the team’s efforts to force the model to extract more quotes from data and less free text.

    Future work for the team includes extending to languages other than English, creating additional methods for quantifying uncertainty in the model, and pulling off similar results with open-sourced models. 

    “Clinical information buried in unstructured clinical notes has unique challenges compared to general domain text mostly due to large use of acronyms, and inconsistent textual patterns used across different health care facilities,” says Sadid Hasan, AI lead at Microsoft and former executive director of AI at CVS Health, who was not involved in the research. “To this end, this work sets forth an interesting paradigm of leveraging the power of general domain large language models for several important zero-/few-shot clinical NLP tasks. Specifically, the proposed guided prompt design of LLMs to generate more structured outputs could lead to further developing smaller deployable models by iteratively utilizing the model generated pseudo-labels.”

    “AI has accelerated in the last five years to the point at which these large models can predict contextualized recommendations with benefits rippling out across a variety of domains such as suggesting novel drug formulations, understanding unstructured text, code recommendations or create works of art inspired by any number of human artists or styles,” says Parminder Bhatia, who was formerly Head of Machine Learning at AWS Health AI and is currently Head of ML for low-code applications leveraging large language models at AWS AI Labs. “One of the applications of these large models [the team has] recently launched is Amazon CodeWhisperer, which is [an] ML-powered coding companion that helps developers in building applications.”

    As part of the MIT Abdul Latif Jameel Clinic for Machine Learning in Health, Agrawal, Sontag, and Lang wrote the paper alongside Yoon Kim, MIT assistant professor and CSAIL principal investigator, and Stefan Hegselmann, a visiting PhD student from the University of Muenster. First-author Agrawal’s research was supported by a Takeda Fellowship, the MIT Deshpande Center for Technological Innovation, and the MLA@CSAIL Initiatives. More

  • in

    Busy GPUs: Sampling and pipelining method speeds up deep learning on large graphs

    Graphs, a potentially extensive web of nodes connected by edges, can be used to express and interrogate relationships between data, like social connections, financial transactions, traffic, energy grids, and molecular interactions. As researchers collect more data and build out these graphical pictures, researchers will need faster and more efficient methods, as well as more computational power, to conduct deep learning on them, in the way of graph neural networks (GNN).  

    Now, a new method, called SALIENT (SAmpling, sLIcing, and data movemeNT), developed by researchers at MIT and IBM Research, improves the training and inference performance by addressing three key bottlenecks in computation. This dramatically cuts down on the runtime of GNNs on large datasets, which, for example, contain on the scale of 100 million nodes and 1 billion edges. Further, the team found that the technique scales well when computational power is added from one to 16 graphical processing units (GPUs). The work was presented at the Fifth Conference on Machine Learning and Systems.

    “We started to look at the challenges current systems experienced when scaling state-of-the-art machine learning techniques for graphs to really big datasets. It turned out there was a lot of work to be done, because a lot of the existing systems were achieving good performance primarily on smaller datasets that fit into GPU memory,” says Tim Kaler, the lead author and a postdoc in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).

    By vast datasets, experts mean scales like the entire Bitcoin network, where certain patterns and data relationships could spell out trends or foul play. “There are nearly a billion Bitcoin transactions on the blockchain, and if we want to identify illicit activities inside such a joint network, then we are facing a graph of such a scale,” says co-author Jie Chen, senior research scientist and manager of IBM Research and the MIT-IBM Watson AI Lab. “We want to build a system that is able to handle that kind of graph and allows processing to be as efficient as possible, because every day we want to keep up with the pace of the new data that are generated.”

    Kaler and Chen’s co-authors include Nickolas Stathas MEng ’21 of Jump Trading, who developed SALIENT as part of his graduate work; former MIT-IBM Watson AI Lab intern and MIT graduate student Anne Ouyang; MIT CSAIL postdoc Alexandros-Stavros Iliopoulos; MIT CSAIL Research Scientist Tao B. Schardl; and Charles E. Leiserson, the Edwin Sibley Webster Professor of Electrical Engineering at MIT and a researcher with the MIT-IBM Watson AI Lab.     

    For this problem, the team took a systems-oriented approach in developing their method: SALIENT, says Kaler. To do this, the researchers implemented what they saw as important, basic optimizations of components that fit into existing machine-learning frameworks, such as PyTorch Geometric and the deep graph library (DGL), which are interfaces for building a machine-learning model. Stathas says the process is like swapping out engines to build a faster car. Their method was designed to fit into existing GNN architectures, so that domain experts could easily apply this work to their specified fields to expedite model training and tease out insights during inference faster. The trick, the team determined, was to keep all of the hardware (CPUs, data links, and GPUs) busy at all times: while the CPU samples the graph and prepares mini-batches of data that will then be transferred through the data link, the more critical GPU is working to train the machine-learning model or conduct inference. 

    The researchers began by analyzing the performance of a commonly used machine-learning library for GNNs (PyTorch Geometric), which showed a startlingly low utilization of available GPU resources. Applying simple optimizations, the researchers improved GPU utilization from 10 to 30 percent, resulting in a 1.4 to two times performance improvement relative to public benchmark codes. This fast baseline code could execute one complete pass over a large training dataset through the algorithm (an epoch) in 50.4 seconds.                          

    Seeking further performance improvements, the researchers set out to examine the bottlenecks that occur at the beginning of the data pipeline: the algorithms for graph sampling and mini-batch preparation. Unlike other neural networks, GNNs perform a neighborhood aggregation operation, which computes information about a node using information present in other nearby nodes in the graph — for example, in a social network graph, information from friends of friends of a user. As the number of layers in the GNN increase, the number of nodes the network has to reach out to for information can explode, exceeding the limits of a computer. Neighborhood sampling algorithms help by selecting a smaller random subset of nodes to gather; however, the researchers found that current implementations of this were too slow to keep up with the processing speed of modern GPUs. In response, they identified a mix of data structures, algorithmic optimizations, and so forth that improved sampling speed, ultimately improving the sampling operation alone by about three times, taking the per-epoch runtime from 50.4 to 34.6 seconds. They also found that sampling, at an appropriate rate, can be done during inference, improving overall energy efficiency and performance, a point that had been overlooked in the literature, the team notes.      

    In previous systems, this sampling step was a multi-process approach, creating extra data and unnecessary data movement between the processes. The researchers made their SALIENT method more nimble by creating a single process with lightweight threads that kept the data on the CPU in shared memory. Further, SALIENT takes advantage of a cache of modern processors, says Stathas, parallelizing feature slicing, which extracts relevant information from nodes of interest and their surrounding neighbors and edges, within the shared memory of the CPU core cache. This again reduced the overall per-epoch runtime from 34.6 to 27.8 seconds.

    The last bottleneck the researchers addressed was to pipeline mini-batch data transfers between the CPU and GPU using a prefetching step, which would prepare data just before it’s needed. The team calculated that this would maximize bandwidth usage in the data link and bring the method up to perfect utilization; however, they only saw around 90 percent. They identified and fixed a performance bug in a popular PyTorch library that caused unnecessary round-trip communications between the CPU and GPU. With this bug fixed, the team achieved a 16.5 second per-epoch runtime with SALIENT.

    “Our work showed, I think, that the devil is in the details,” says Kaler. “When you pay close attention to the details that impact performance when training a graph neural network, you can resolve a huge number of performance issues. With our solutions, we ended up being completely bottlenecked by GPU computation, which is the ideal goal of such a system.”

    SALIENT’s speed was evaluated on three standard datasets ogbn-arxiv, ogbn-products, and ogbn-papers100M, as well as in multi-machine settings, with different levels of fanout (amount of data that the CPU would prepare for the GPU), and across several architectures, including the most recent state-of-the-art one, GraphSAGE-RI. In each setting, SALIENT outperformed PyTorch Geometric, most notably on the large ogbn-papers100M dataset, containing 100 million nodes and over a billion edges Here, it was three times faster, running on one GPU, than the optimized baseline that was originally created for this work; with 16 GPUs, SALIENT was an additional eight times faster. 

    While other systems had slightly different hardware and experimental setups, so it wasn’t always a direct comparison, SALIENT still outperformed them. Among systems that achieved similar accuracy, representative performance numbers include 99 seconds using one GPU and 32 CPUs, and 13 seconds using 1,536 CPUs. In contrast, SALIENT’s runtime using one GPU and 20 CPUs was 16.5 seconds and was just two seconds with 16 GPUs and 320 CPUs. “If you look at the bottom-line numbers that prior work reports, our 16 GPU runtime (two seconds) is an order of magnitude faster than other numbers that have been reported previously on this dataset,” says Kaler. The researchers attributed their performance improvements, in part, to their approach of optimizing their code for a single machine before moving to the distributed setting. Stathas says that the lesson here is that for your money, “it makes more sense to use the hardware you have efficiently, and to its extreme, before you start scaling up to multiple computers,” which can provide significant savings on cost and carbon emissions that can come with model training.

    This new capacity will now allow researchers to tackle and dig deeper into bigger and bigger graphs. For example, the Bitcoin network that was mentioned earlier contained 100,000 nodes; the SALIENT system can capably handle a graph 1,000 times (or three orders of magnitude) larger.

    “In the future, we would be looking at not just running this graph neural network training system on the existing algorithms that we implemented for classifying or predicting the properties of each node, but we also want to do more in-depth tasks, such as identifying common patterns in a graph (subgraph patterns), [which] may be actually interesting for indicating financial crimes,” says Chen. “We also want to identify nodes in a graph that are similar in a sense that they possibly would be corresponding to the same bad actor in a financial crime. These tasks would require developing additional algorithms, and possibly also neural network architectures.”

    This research was supported by the MIT-IBM Watson AI Lab and in part by the U.S. Air Force Research Laboratory and the U.S. Air Force Artificial Intelligence Accelerator. More

  • in

    Breaking the scaling limits of analog computing

    As machine-learning models become larger and more complex, they require faster and more energy-efficient hardware to perform computations. Conventional digital computers are struggling to keep up.

    An analog optical neural network could perform the same tasks as a digital one, such as image classification or speech recognition, but because computations are performed using light instead of electrical signals, optical neural networks can run many times faster while consuming less energy.

    However, these analog devices are prone to hardware errors that can make computations less precise. Microscopic imperfections in hardware components are one cause of these errors. In an optical neural network that has many connected components, errors can quickly accumulate.

    Even with error-correction techniques, due to fundamental properties of the devices that make up an optical neural network, some amount of error is unavoidable. A network that is large enough to be implemented in the real world would be far too imprecise to be effective.

    MIT researchers have overcome this hurdle and found a way to effectively scale an optical neural network. By adding a tiny hardware component to the optical switches that form the network’s architecture, they can reduce even the uncorrectable errors that would otherwise accumulate in the device.

    Their work could enable a super-fast, energy-efficient, analog neural network that can function with the same accuracy as a digital one. With this technique, as an optical circuit becomes larger, the amount of error in its computations actually decreases.  

    “This is remarkable, as it runs counter to the intuition of analog systems, where larger circuits are supposed to have higher errors, so that errors set a limit on scalability. This present paper allows us to address the scalability question of these systems with an unambiguous ‘yes,’” says lead author Ryan Hamerly, a visiting scientist in the MIT Research Laboratory for Electronics (RLE) and Quantum Photonics Laboratory and senior scientist at NTT Research.

    Hamerly’s co-authors are graduate student Saumil Bandyopadhyay and senior author Dirk Englund, an associate professor in the MIT Department of Electrical Engineering and Computer Science (EECS), leader of the Quantum Photonics Laboratory, and member of the RLE. The research is published today in Nature Communications.

    Multiplying with light

    An optical neural network is composed of many connected components that function like reprogrammable, tunable mirrors. These tunable mirrors are called Mach-Zehnder Inferometers (MZI). Neural network data are encoded into light, which is fired into the optical neural network from a laser.

    A typical MZI contains two mirrors and two beam splitters. Light enters the top of an MZI, where it is split into two parts which interfere with each other before being recombined by the second beam splitter and then reflected out the bottom to the next MZI in the array. Researchers can leverage the interference of these optical signals to perform complex linear algebra operations, known as matrix multiplication, which is how neural networks process data.

    But errors that can occur in each MZI quickly accumulate as light moves from one device to the next. One can avoid some errors by identifying them in advance and tuning the MZIs so earlier errors are cancelled out by later devices in the array.

    “It is a very simple algorithm if you know what the errors are. But these errors are notoriously difficult to ascertain because you only have access to the inputs and outputs of your chip,” says Hamerly. “This motivated us to look at whether it is possible to create calibration-free error correction.”

    Hamerly and his collaborators previously demonstrated a mathematical technique that went a step further. They could successfully infer the errors and correctly tune the MZIs accordingly, but even this didn’t remove all the error.

    Due to the fundamental nature of an MZI, there are instances where it is impossible to tune a device so all light flows out the bottom port to the next MZI. If the device loses a fraction of light at each step and the array is very large, by the end there will only be a tiny bit of power left.

    “Even with error correction, there is a fundamental limit to how good a chip can be. MZIs are physically unable to realize certain settings they need to be configured to,” he says.

    So, the team developed a new type of MZI. The researchers added an additional beam splitter to the end of the device, calling it a 3-MZI because it has three beam splitters instead of two. Due to the way this additional beam splitter mixes the light, it becomes much easier for an MZI to reach the setting it needs to send all light from out through its bottom port.

    Importantly, the additional beam splitter is only a few micrometers in size and is a passive component, so it doesn’t require any extra wiring. Adding additional beam splitters doesn’t significantly change the size of the chip.

    Bigger chip, fewer errors

    When the researchers conducted simulations to test their architecture, they found that it can eliminate much of the uncorrectable error that hampers accuracy. And as the optical neural network becomes larger, the amount of error in the device actually drops — the opposite of what happens in a device with standard MZIs.

    Using 3-MZIs, they could potentially create a device big enough for commercial uses with error that has been reduced by a factor of 20, Hamerly says.

    The researchers also developed a variant of the MZI design specifically for correlated errors. These occur due to manufacturing imperfections — if the thickness of a chip is slightly wrong, the MZIs may all be off by about the same amount, so the errors are all about the same. They found a way to change the configuration of an MZI to make it robust to these types of errors. This technique also increased the bandwidth of the optical neural network so it can run three times faster.

    Now that they have showcased these techniques using simulations, Hamerly and his collaborators plan to test these approaches on physical hardware and continue driving toward an optical neural network they can effectively deploy in the real world.

    This research is funded, in part, by a National Science Foundation graduate research fellowship and the U.S. Air Force Office of Scientific Research. More

  • in

    A far-sighted approach to machine learning

    Picture two teams squaring off on a football field. The players can cooperate to achieve an objective, and compete against other players with conflicting interests. That’s how the game works.

    Creating artificial intelligence agents that can learn to compete and cooperate as effectively as humans remains a thorny problem. A key challenge is enabling AI agents to anticipate future behaviors of other agents when they are all learning simultaneously.

    Because of the complexity of this problem, current approaches tend to be myopic; the agents can only guess the next few moves of their teammates or competitors, which leads to poor performance in the long run. 

    Researchers from MIT, the MIT-IBM Watson AI Lab, and elsewhere have developed a new approach that gives AI agents a farsighted perspective. Their machine-learning framework enables cooperative or competitive AI agents to consider what other agents will do as time approaches infinity, not just over a few next steps. The agents then adapt their behaviors accordingly to influence other agents’ future behaviors and arrive at an optimal, long-term solution.

    This framework could be used by a group of autonomous drones working together to find a lost hiker in a thick forest, or by self-driving cars that strive to keep passengers safe by anticipating future moves of other vehicles driving on a busy highway.

    “When AI agents are cooperating or competing, what matters most is when their behaviors converge at some point in the future. There are a lot of transient behaviors along the way that don’t matter very much in the long run. Reaching this converged behavior is what we really care about, and we now have a mathematical way to enable that,” says Dong-Ki Kim, a graduate student in the MIT Laboratory for Information and Decision Systems (LIDS) and lead author of a paper describing this framework.

    The senior author is Jonathan P. How, the Richard C. Maclaurin Professor of Aeronautics and Astronautics and a member of the MIT-IBM Watson AI Lab. Co-authors include others at the MIT-IBM Watson AI Lab, IBM Research, Mila-Quebec Artificial Intelligence Institute, and Oxford University. The research will be presented at the Conference on Neural Information Processing Systems.

    Play video

    In this demo video, the red robot, which has been trained using the researchers’ machine-learning system, is able to defeat the green robot by learning more effective behaviors that take advantage of the constantly changing strategy of its opponent.

    More agents, more problems

    The researchers focused on a problem known as multiagent reinforcement learning. Reinforcement learning is a form of machine learning in which an AI agent learns by trial and error. Researchers give the agent a reward for “good” behaviors that help it achieve a goal. The agent adapts its behavior to maximize that reward until it eventually becomes an expert at a task.

    But when many cooperative or competing agents are simultaneously learning, things become increasingly complex. As agents consider more future steps of their fellow agents, and how their own behavior influences others, the problem soon requires far too much computational power to solve efficiently. This is why other approaches only focus on the short term.

    “The AIs really want to think about the end of the game, but they don’t know when the game will end. They need to think about how to keep adapting their behavior into infinity so they can win at some far time in the future. Our paper essentially proposes a new objective that enables an AI to think about infinity,” says Kim.

    But since it is impossible to plug infinity into an algorithm, the researchers designed their system so agents focus on a future point where their behavior will converge with that of other agents, known as equilibrium. An equilibrium point determines the long-term performance of agents, and multiple equilibria can exist in a multiagent scenario. Therefore, an effective agent actively influences the future behaviors of other agents in such a way that they reach a desirable equilibrium from the agent’s perspective. If all agents influence each other, they converge to a general concept that the researchers call an “active equilibrium.”

    The machine-learning framework they developed, known as FURTHER (which stands for FUlly Reinforcing acTive influence witH averagE Reward), enables agents to learn how to adapt their behaviors as they interact with other agents to achieve this active equilibrium.

    FURTHER does this using two machine-learning modules. The first, an inference module, enables an agent to guess the future behaviors of other agents and the learning algorithms they use, based solely on their prior actions.

    This information is fed into the reinforcement learning module, which the agent uses to adapt its behavior and influence other agents in a way that maximizes its reward.

    “The challenge was thinking about infinity. We had to use a lot of different mathematical tools to enable that, and make some assumptions to get it to work in practice,” Kim says.

    Winning in the long run

    They tested their approach against other multiagent reinforcement learning frameworks in several different scenarios, including a pair of robots fighting sumo-style and a battle pitting two 25-agent teams against one another. In both instances, the AI agents using FURTHER won the games more often.

    Since their approach is decentralized, which means the agents learn to win the games independently, it is also more scalable than other methods that require a central computer to control the agents, Kim explains.

    The researchers used games to test their approach, but FURTHER could be used to tackle any kind of multiagent problem. For instance, it could be applied by economists seeking to develop sound policy in situations where many interacting entitles have behaviors and interests that change over time.

    Economics is one application Kim is particularly excited about studying. He also wants to dig deeper into the concept of an active equilibrium and continue enhancing the FURTHER framework.

    This research is funded, in part, by the MIT-IBM Watson AI Lab. More

  • in

    Learning on the edge

    Microcontrollers, miniature computers that can run simple commands, are the basis for billions of connected devices, from internet-of-things (IoT) devices to sensors in automobiles. But cheap, low-power microcontrollers have extremely limited memory and no operating system, making it challenging to train artificial intelligence models on “edge devices” that work independently from central computing resources.

    Training a machine-learning model on an intelligent edge device allows it to adapt to new data and make better predictions. For instance, training a model on a smart keyboard could enable the keyboard to continually learn from the user’s writing. However, the training process requires so much memory that it is typically done using powerful computers at a data center, before the model is deployed on a device. This is more costly and raises privacy issues since user data must be sent to a central server.

    To address this problem, researchers at MIT and the MIT-IBM Watson AI Lab developed a new technique that enables on-device training using less than a quarter of a megabyte of memory. Other training solutions designed for connected devices can use more than 500 megabytes of memory, greatly exceeding the 256-kilobyte capacity of most microcontrollers (there are 1,024 kilobytes in one megabyte).

    The intelligent algorithms and framework the researchers developed reduce the amount of computation required to train a model, which makes the process faster and more memory efficient. Their technique can be used to train a machine-learning model on a microcontroller in a matter of minutes.

    This technique also preserves privacy by keeping data on the device, which could be especially beneficial when data are sensitive, such as in medical applications. It also could enable customization of a model based on the needs of users. Moreover, the framework preserves or improves the accuracy of the model when compared to other training approaches.

    “Our study enables IoT devices to not only perform inference but also continuously update the AI models to newly collected data, paving the way for lifelong on-device learning. The low resource utilization makes deep learning more accessible and can have a broader reach, especially for low-power edge devices,” says Song Han, an associate professor in the Department of Electrical Engineering and Computer Science (EECS), a member of the MIT-IBM Watson AI Lab, and senior author of the paper describing this innovation.

    Joining Han on the paper are co-lead authors and EECS PhD students Ji Lin and Ligeng Zhu, as well as MIT postdocs Wei-Ming Chen and Wei-Chen Wang, and Chuang Gan, a principal research staff member at the MIT-IBM Watson AI Lab. The research will be presented at the Conference on Neural Information Processing Systems.

    Han and his team previously addressed the memory and computational bottlenecks that exist when trying to run machine-learning models on tiny edge devices, as part of their TinyML initiative.

    Lightweight training

    A common type of machine-learning model is known as a neural network. Loosely based on the human brain, these models contain layers of interconnected nodes, or neurons, that process data to complete a task, such as recognizing people in photos. The model must be trained first, which involves showing it millions of examples so it can learn the task. As it learns, the model increases or decreases the strength of the connections between neurons, which are known as weights.

    The model may undergo hundreds of updates as it learns, and the intermediate activations must be stored during each round. In a neural network, activation is the middle layer’s intermediate results. Because there may be millions of weights and activations, training a model requires much more memory than running a pre-trained model, Han explains.

    Han and his collaborators employed two algorithmic solutions to make the training process more efficient and less memory-intensive. The first, known as sparse update, uses an algorithm that identifies the most important weights to update at each round of training. The algorithm starts freezing the weights one at a time until it sees the accuracy dip to a set threshold, then it stops. The remaining weights are updated, while the activations corresponding to the frozen weights don’t need to be stored in memory.

    “Updating the whole model is very expensive because there are a lot of activations, so people tend to update only the last layer, but as you can imagine, this hurts the accuracy. For our method, we selectively update those important weights and make sure the accuracy is fully preserved,” Han says.

    Their second solution involves quantized training and simplifying the weights, which are typically 32 bits. An algorithm rounds the weights so they are only eight bits, through a process known as quantization, which cuts the amount of memory for both training and inference. Inference is the process of applying a model to a dataset and generating a prediction. Then the algorithm applies a technique called quantization-aware scaling (QAS), which acts like a multiplier to adjust the ratio between weight and gradient, to avoid any drop in accuracy that may come from quantized training.

    The researchers developed a system, called a tiny training engine, that can run these algorithmic innovations on a simple microcontroller that lacks an operating system. This system changes the order of steps in the training process so more work is completed in the compilation stage, before the model is deployed on the edge device.

    “We push a lot of the computation, such as auto-differentiation and graph optimization, to compile time. We also aggressively prune the redundant operators to support sparse updates. Once at runtime, we have much less workload to do on the device,” Han explains.

    A successful speedup

    Their optimization only required 157 kilobytes of memory to train a machine-learning model on a microcontroller, whereas other techniques designed for lightweight training would still need between 300 and 600 megabytes.

    They tested their framework by training a computer vision model to detect people in images. After only 10 minutes of training, it learned to complete the task successfully. Their method was able to train a model more than 20 times faster than other approaches.

    Now that they have demonstrated the success of these techniques for computer vision models, the researchers want to apply them to language models and different types of data, such as time-series data. At the same time, they want to use what they’ve learned to shrink the size of larger models without sacrificing accuracy, which could help reduce the carbon footprint of training large-scale machine-learning models.

    “AI model adaptation/training on a device, especially on embedded controllers, is an open challenge. This research from MIT has not only successfully demonstrated the capabilities, but also opened up new possibilities for privacy-preserving device personalization in real-time,” says Nilesh Jain, a principal engineer at Intel who was not involved with this work. “Innovations in the publication have broader applicability and will ignite new systems-algorithm co-design research.”

    “On-device learning is the next major advance we are working toward for the connected intelligent edge. Professor Song Han’s group has shown great progress in demonstrating the effectiveness of edge devices for training,” adds Jilei Hou, vice president and head of AI research at Qualcomm. “Qualcomm has awarded his team an Innovation Fellowship for further innovation and advancement in this area.”

    This work is funded by the National Science Foundation, the MIT-IBM Watson AI Lab, the MIT AI Hardware Program, Amazon, Intel, Qualcomm, Ford Motor Company, and Google. More

  • in

    Neurodegenerative disease can progress in newly identified patterns

    Neurodegenerative diseases — like amyotrophic lateral sclerosis (ALS, or Lou Gehrig’s disease), Alzheimer’s, and Parkinson’s — are complicated, chronic ailments that can present with a variety of symptoms, worsen at different rates, and have many underlying genetic and environmental causes, some of which are unknown. ALS, in particular, affects voluntary muscle movement and is always fatal, but while most people survive for only a few years after diagnosis, others live with the disease for decades. Manifestations of ALS can also vary significantly; often slower disease development correlates with onset in the limbs and affecting fine motor skills, while the more serious, bulbar ALS impacts swallowing, speaking, breathing, and mobility. Therefore, understanding the progression of diseases like ALS is critical to enrollment in clinical trials, analysis of potential interventions, and discovery of root causes.

    However, assessing disease evolution is far from straightforward. Current clinical studies typically assume that health declines on a downward linear trajectory on a symptom rating scale, and use these linear models to evaluate whether drugs are slowing disease progression. However, data indicate that ALS often follows nonlinear trajectories, with periods where symptoms are stable alternating with periods when they are rapidly changing. Since data can be sparse, and health assessments often rely on subjective rating metrics measured at uneven time intervals, comparisons across patient populations are difficult. These heterogenous data and progression, in turn, complicate analyses of invention effectiveness and potentially mask disease origin.

    Now, a new machine-learning method developed by researchers from MIT, IBM Research, and elsewhere aims to better characterize ALS disease progression patterns to inform clinical trial design.

    “There are groups of individuals that share progression patterns. For example, some seem to have really fast-progressing ALS and others that have slow-progressing ALS that varies over time,” says Divya Ramamoorthy PhD ’22, a research specialist at MIT and lead author of a new paper on the work that was published this month in Nature Computational Science. “The question we were asking is: can we use machine learning to identify if, and to what extent, those types of consistent patterns across individuals exist?”

    Their technique, indeed, identified discrete and robust clinical patterns in ALS progression, many of which are non-linear. Further, these disease progression subtypes were consistent across patient populations and disease metrics. The team additionally found that their method can be applied to Alzheimer’s and Parkinson’s diseases as well.

    Joining Ramamoorthy on the paper are MIT-IBM Watson AI Lab members Ernest Fraenkel, a professor in the MIT Department of Biological Engineering; Research Scientist Soumya Ghosh of IBM Research; and Principal Research Scientist Kenney Ng, also of IBM Research. Additional authors include Kristen Severson PhD ’18, a senior researcher at Microsoft Research and former member of the Watson Lab and of IBM Research; Karen Sachs PhD ’06 of Next Generation Analytics; a team of researchers with Answer ALS; Jonathan D. Glass and Christina N. Fournier of the Emory University School of Medicine; the Pooled Resource Open-Access ALS Clinical Trials Consortium; ALS/MND Natural History Consortium; Todd M. Herrington of Massachusetts General Hospital (MGH) and Harvard Medical School; and James D. Berry of MGH.

    Play video

    MIT Professor Ernest Fraenkel describes early stages of his research looking at root causes of amyotrophic lateral sclerosis (ALS).

    Reshaping health decline

    After consulting with clinicians, the team of machine learning researchers and neurologists let the data speak for itself. They designed an unsupervised machine-learning model that employed two methods: Gaussian process regression and Dirichlet process clustering. These inferred the health trajectories directly from patient data and automatically grouped similar trajectories together without prescribing the number of clusters or the shape of the curves, forming ALS progression “subtypes.” Their method incorporated prior clinical knowledge in the way of a bias for negative trajectories — consistent with expectations for neurodegenerative disease progressions — but did not assume any linearity. “We know that linearity is not reflective of what’s actually observed,” says Ng. “The methods and models that we use here were more flexible, in the sense that, they capture what was seen in the data,” without the need for expensive labeled data and prescription of parameters.

    Primarily, they applied the model to five longitudinal datasets from ALS clinical trials and observational studies. These used the gold standard to measure symptom development: the ALS functional rating scale revised (ALSFRS-R), which captures a global picture of patient neurological impairment but can be a bit of a “messy metric.” Additionally, performance on survivability probabilities, forced vital capacity (a measurement of respiratory function), and subscores of ALSFRS-R, which looks at individual bodily functions, were incorporated.

    New regimes of progression and utility

    When their population-level model was trained and tested on these metrics, four dominant patterns of disease popped out of the many trajectories — sigmoidal fast progression, stable slow progression, unstable slow progression, and unstable moderate progression — many with strong nonlinear characteristics. Notably, it captured trajectories where patients experienced a sudden loss of ability, called a functional cliff, which would significantly impact treatments, enrollment in clinical trials, and quality of life.

    The researchers compared their method against other commonly used linear and nonlinear approaches in the field to separate the contribution of clustering and linearity to the model’s accuracy. The new work outperformed them, even patient-specific models, and found that subtype patterns were consistent across measures. Impressively, when data were withheld, the model was able to interpolate missing values, and, critically, could forecast future health measures. The model could also be trained on one ALSFRS-R dataset and predict cluster membership in others, making it robust, generalizable, and accurate with scarce data. So long as 6-12 months of data were available, health trajectories could be inferred with higher confidence than conventional methods.

    The researchers’ approach also provided insights into Alzheimer’s and Parkinson’s diseases, both of which can have a range of symptom presentations and progression. For Alzheimer’s, the new technique could identify distinct disease patterns, in particular variations in the rates of conversion of mild to severe disease. The Parkinson’s analysis demonstrated a relationship between progression trajectories for off-medication scores and disease phenotypes, such as the tremor-dominant or postural instability/gait difficulty forms of Parkinson’s disease.

    The work makes significant strides to find the signal amongst the noise in the time-series of complex neurodegenerative disease. “The patterns that we see are reproducible across studies, which I don’t believe had been shown before, and that may have implications for how we subtype the [ALS] disease,” says Fraenkel. As the FDA has been considering the impact of non-linearity in clinical trial designs, the team notes that their work is particularly pertinent.

    As new ways to understand disease mechanisms come online, this model provides another tool to pick apart illnesses like ALS, Alzheimer’s, and Parkinson’s from a systems biology perspective.

    “We have a lot of molecular data from the same patients, and so our long-term goal is to see whether there are subtypes of the disease,” says Fraenkel, whose lab looks at cellular changes to understand the etiology of diseases and possible targets for cures. “One approach is to start with the symptoms … and see if people with different patterns of disease progression are also different at the molecular level. That might lead you to a therapy. Then there’s the bottom-up approach, where you start with the molecules” and try to reconstruct biological pathways that might be affected. “We’re going [to be tackling this] from both ends … and finding if something meets in the middle.”

    This research was supported, in part, by the MIT-IBM Watson AI Lab, the Muscular Dystrophy Association, Department of Veterans Affairs of Research and Development, the Department of Defense, NSF Gradate Research Fellowship Program, Siebel Scholars Fellowship, Answer ALS, the United States Army Medical Research Acquisition Activity, National Institutes of Health, and the NIH/NINDS. More

  • in

    Q&A: Global challenges surrounding the deployment of AI

    The AI Policy Forum (AIPF) is an initiative of the MIT Schwarzman College of Computing to move the global conversation about the impact of artificial intelligence from principles to practical policy implementation. Formed in late 2020, AIPF brings together leaders in government, business, and academia to develop approaches to address the societal challenges posed by the rapid advances and increasing applicability of AI.

    The co-chairs of the AI Policy Forum are Aleksander Madry, the Cadence Design Systems Professor; Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science; and Luis Videgaray, senior lecturer at MIT Sloan School of Management and director of MIT AI Policy for the World Project. Here, they discuss talk some of the key issues facing the AI policy landscape today and the challenges surrounding the deployment of AI. The three are co-organizers of the upcoming AI Policy Forum Summit on Sept. 28, which will further explore the issues discussed here.

    Q: Can you talk about the ­ongoing work of the AI Policy Forum and the AI policy landscape generally?

    Ozdaglar: There is no shortage of discussion about AI at different venues, but conversations are often high-level, focused on questions of ethics and principles, or on policy problems alone. The approach the AIPF takes to its work is to target specific questions with actionable policy solutions and engage with the stakeholders working directly in these areas. We work “behind the scenes” with smaller focus groups to tackle these challenges and aim to bring visibility to some potential solutions alongside the players working directly on them through larger gatherings.

    Q: AI impacts many sectors, which makes us naturally worry about its trustworthiness. Are there any emerging best practices for development and deployment of trustworthy AI?

    Madry: The most important thing to understand regarding deploying trustworthy AI is that AI technology isn’t some natural, preordained phenomenon. It is something built by people. People who are making certain design decisions.

    We thus need to advance research that can guide these decisions as well as provide more desirable solutions. But we also need to be deliberate and think carefully about the incentives that drive these decisions. 

    Now, these incentives stem largely from the business considerations, but not exclusively so. That is, we should also recognize that proper laws and regulations, as well as establishing thoughtful industry standards have a big role to play here too.

    Indeed, governments can put in place rules that prioritize the value of deploying AI while being keenly aware of the corresponding downsides, pitfalls, and impossibilities. The design of such rules will be an ongoing and evolving process as the technology continues to improve and change, and we need to adapt to socio-political realities as well.

    Q: Perhaps one of the most rapidly evolving domains in AI deployment is in the financial sector. From a policy perspective, how should governments, regulators, and lawmakers make AI work best for consumers in finance?

    Videgaray: The financial sector is seeing a number of trends that present policy challenges at the intersection of AI systems. For one, there is the issue of explainability. By law (in the U.S. and in many other countries), lenders need to provide explanations to customers when they take actions deleterious in whatever way, like denial of a loan, to a customer’s interest. However, as financial services increasingly rely on automated systems and machine learning models, the capacity of banks to unpack the “black box” of machine learning to provide that level of mandated explanation becomes tenuous. So how should the finance industry and its regulators adapt to this advance in technology? Perhaps we need new standards and expectations, as well as tools to meet these legal requirements.

    Meanwhile, economies of scale and data network effects are leading to a proliferation of AI outsourcing, and more broadly, AI-as-a-service is becoming increasingly common in the finance industry. In particular, we are seeing fintech companies provide the tools for underwriting to other financial institutions — be it large banks or small, local credit unions. What does this segmentation of the supply chain mean for the industry? Who is accountable for the potential problems in AI systems deployed through several layers of outsourcing? How can regulators adapt to guarantee their mandates of financial stability, fairness, and other societal standards?

    Q: Social media is one of the most controversial sectors of the economy, resulting in many societal shifts and disruptions around the world. What policies or reforms might be needed to best ensure social media is a force for public good and not public harm?

    Ozdaglar: The role of social media in society is of growing concern to many, but the nature of these concerns can vary quite a bit — with some seeing social media as not doing enough to prevent, for example, misinformation and extremism, and others seeing it as unduly silencing certain viewpoints. This lack of unified view on what the problem is impacts the capacity to enact any change. All of that is additionally coupled with the complexities of the legal framework in the U.S. spanning the First Amendment, Section 230 of the Communications Decency Act, and trade laws.

    However, these difficulties in regulating social media do not mean that there is nothing to be done. Indeed, regulators have begun to tighten their control over social media companies, both in the United States and abroad, be it through antitrust procedures or other means. In particular, Ofcom in the U.K. and the European Union is already introducing new layers of oversight to platforms. Additionally, some have proposed taxes on online advertising to address the negative externalities caused by current social media business model. So, the policy tools are there, if the political will and proper guidance exists to implement them. More

  • in

    In-home wireless device tracks disease progression in Parkinson’s patients

    Parkinson’s disease is the fastest-growing neurological disease, now affecting more than 10 million people worldwide, yet clinicians still face huge challenges in tracking its severity and progression.

    Clinicians typically evaluate patients by testing their motor skills and cognitive functions during clinic visits. These semisubjective measurements are often skewed by outside factors — perhaps a patient is tired after a long drive to the hospital. More than 40 percent of individuals with Parkinson’s are never treated by a neurologist or Parkinson’s specialist, often because they live too far from an urban center or have difficulty traveling.

    In an effort to address these problems, researchers from MIT and elsewhere demonstrated an in-home device that can monitor a patient’s movement and gait speed, which can be used to evaluate Parkinson’s severity, the progression of the disease, and the patient’s response to medication.

    The device, which is about the size of a Wi-Fi router, gathers data passively using radio signals that reflect off the patient’s body as they move around their home. The patient does not need to wear a gadget or change their behavior. (A recent study, for example, showed that this type of device could be used to detect Parkinson’s from a person’s breathing patterns while sleeping.)

    The researchers used these devices to conduct a one-year at-home study with 50 participants. They showed that, by using machine-learning algorithms to analyze the troves of data they passively gathered (more than 200,000 gait speed measurements), a clinician could track Parkinson’s progression and medication response more effectively than they would with periodic, in-clinic evaluations.

    “By being able to have a device in the home that can monitor a patient and tell the doctor remotely about the progression of the disease, and the patient’s medication response so they can attend to the patient even if the patient can’t come to the clinic — now they have real, reliable information — that actually goes a long way toward improving equity and access,” says senior author Dina Katabi, the Thuan and Nicole Pham Professor in the Department of Electrical Engineering and Computer Science (EECS), and a principle investigator in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Jameel Clinic.

    The co-lead authors are EECS graduate students Yingcheng Liu and Guo Zhang. The research is published today in Science Translational Medicine.

    A human radar

    This work utilizes a wireless device previously developed in the Katabi lab that analyzes radio signals that bounce off people’s bodies. It transmits signals that use a tiny fraction of the power of a Wi-Fi router — these super-low-power signals don’t interfere with other wireless devices in the home. While radio signals pass through walls and other solid objects, they are reflected off humans due to the water in our bodies.  

    This creates a “human radar” that can track the movement of a person in a room. Radio waves always travel at the same speed, so the length of time it takes the signals to reflect back to the device indicates how the person is moving.

    The device incorporates a machine-learning classifier that can pick out the precise radio signals reflected off the patient even when there are other people moving around the room. Advanced algorithms use these movement data to compute gait speed — how fast the person is walking.

    Because the device operates in the background and runs all day, every day, it can collect a massive amount of data. The researchers wanted to see if they could apply machine learning to these datasets to gain insights about the disease over time.

    They gathered 50 participants, 34 of whom had Parkinson’s, and conducted a one-year study of in-home gait measurements Through the study, the researchers collected more than 200,000 individual measurements that they averaged to smooth out variability due to the conditions irrelevant to the disease. (For example, a patient may hurry up to answer an alarm or walk slower when talking on the phone.)

    They used statistical methods to analyze the data and found that in-home gait speed can be used to effectively track Parkinson’s progression and severity. For instance, they showed that gait speed declined almost twice as fast for individuals with Parkinson’s, compared to those without. 

    “Monitoring the patient continuously as they move around the room enabled us to get really good measurements of their gait speed. And with so much data, we were able to perform aggregation that allowed us to see very small differences,” Zhang says.

    Better, faster results

    Drilling down on these variabilities offered some key insights. For instance, the researchers showed that daily fluctuations in a patient’s walking speed correspond with how they are responding to their medication — walking speed may improve after a dose and then begin to decline after a few hours, as the medication impact wears off.

    “This enables us to objectively measure how your mobility responds to your medication. Previously, this was very cumbersome to do because this medication effect could only be measured by having the patient keep a journal,” Liu says.

    A clinician could use these data to adjust medication dosage more effectively and accurately. This is especially important since drugs used to treat disease symptoms can cause serious side effects if the patient receives too much.

    The researchers were able to demonstrate statistically significant results regarding Parkinson’s progression after studying 50 people for just one year. By contrast, an often-cited study by the Michael J. Fox Foundation involved more than 500 individuals and monitored them for more than five years, Katabi says.

    “For a pharmaceutical company or a biotech company trying to develop medicines for this disease, this could greatly reduce the burden and cost and speed up the development of new therapies,” she adds.

    Katabi credits much of the study’s success to the dedicated team of scientists and clinicians who worked together to tackle the many difficulties that arose along the way. For one, they began the study before the Covid-19 pandemic, so team members initially visited people’s homes to set up the devices. When that was no longer possible, they developed a user-friendly phone app to remotely help participants as they deployed the device at home.

    Through the course of the study, they learned to automate processes and reduce effort, especially for the participants and clinical team.

    This knowledge will prove useful as they look to deploy devices in at-home studies of other neurological disorders, such as Alzheimer’s, ALS, and Huntington’s. They also want to explore how these methods could be used, in conjunction with other work from the Katabi lab showing that Parkinson’s can be diagnosed by monitoring breathing, to collect a holistic set of markers that could diagnose the disease early and then be used to track and treat it.

    “This radio-wave sensor can enable more care (and research) to migrate from hospitals to the home where it is most desired and needed,” says Ray Dorsey, a professor of neurology at the University of Rochester Medical Center, co-author of Ending Parkinson’s, and a co-author of this research paper. “Its potential is just beginning to be seen. We are moving toward a day where we can diagnose and predict disease at home. In the future, we may even be able to predict and ideally prevent events like falls and heart attacks.”

    This work is supported, in part, by the National Institutes of Health and the Michael J. Fox Foundation. More