More stories

  • in

    Artificial intelligence for augmentation and productivity

    The MIT Stephen A. Schwarzman College of Computing has awarded seed grants to seven projects that are exploring how artificial intelligence and human-computer interaction can be leveraged to enhance modern work spaces to achieve better management and higher productivity.

    Funded by Andrew W. Houston ’05 and Dropbox Inc., the projects are intended to be interdisciplinary and bring together researchers from computing, social sciences, and management.

    The seed grants can enable the project teams to conduct research that leads to bigger endeavors in this rapidly evolving area, as well as build community around questions related to AI-augmented management.

    The seven selected projects and research leads include:

    “LLMex: Implementing Vannevar Bush’s Vision of the Memex Using Large Language Models,” led by Patti Maes of the Media Lab and David Karger of the Department of Electrical Engineering and Computer Science (EECS) and the Computer Science and Artificial Intelligence Laboratory (CSAIL). Inspired by Vannevar Bush’s Memex, this project proposes to design, implement, and test the concept of memory prosthetics using large language models (LLMs). The AI-based system will intelligently help an individual keep track of vast amounts of information, accelerate productivity, and reduce errors by automatically recording their work actions and meetings, supporting retrieval based on metadata and vague descriptions, and suggesting relevant, personalized information proactively based on the user’s current focus and context.

    “Using AI Agents to Simulate Social Scenarios,” led by John Horton of the MIT Sloan School of Management and Jacob Andreas of EECS and CSAIL. This project imagines the ability to easily simulate policies, organizational arrangements, and communication tools with AI agents before implementation. Tapping into the capabilities of modern LLMs to serve as a computational model of humans makes this vision of social simulation more realistic, and potentially more predictive.

    “Human Expertise in the Age of AI: Can We Have Our Cake and Eat it Too?” led by Manish Raghavan of MIT Sloan and EECS, and Devavrat Shah of EECS and the Laboratory for Information and Decision Systems. Progress in machine learning, AI, and in algorithmic decision aids has raised the prospect that algorithms may complement human decision-making in a wide variety of settings. Rather than replacing human professionals, this project sees a future where AI and algorithmic decision aids play a role that is complementary to human expertise.

    “Implementing Generative AI in U.S. Hospitals,” led by Julie Shah of the Department of Aeronautics and Astronautics and CSAIL, Retsef Levi of MIT Sloan and the Operations Research Center, Kate Kellog of MIT Sloan, and Ben Armstrong of the Industrial Performance Center. In recent years, studies have linked a rise in burnout from doctors and nurses in the United States with increased administrative burdens associated with electronic health records and other technologies. This project aims to develop a holistic framework to study how generative AI technologies can both increase productivity for organizations and improve job quality for workers in health care settings.

    “Generative AI Augmented Software Tools to Democratize Programming,” led by Harold Abelson of EECS and CSAIL, Cynthia Breazeal of the Media Lab, and Eric Klopfer of the Comparative Media Studies/Writing. Progress in generative AI over the past year is fomenting an upheaval in assumptions about future careers in software and deprecating the role of coding. This project will stimulate a similar transformation in computing education for those who have no prior technical training by creating a software tool that could eliminate much of the need for learners to deal with code when creating applications.

    “Acquiring Expertise and Societal Productivity in a World of Artificial Intelligence,” led by David Atkin and Martin Beraja of the Department of Economics, and Danielle Li of MIT Sloan. Generative AI is thought to augment the capabilities of workers performing cognitive tasks. This project seeks to better understand how the arrival of AI technologies may impact skill acquisition and productivity, and to explore complementary policy interventions that will allow society to maximize the gains from such technologies.

    “AI Augmented Onboarding and Support,” led by Tim Kraska of EECS and CSAIL, and Christoph Paus of the Department of Physics. While LLMs have made enormous leaps forward in recent years and are poised to fundamentally change the way students and professionals learn about new tools and systems, there is often a steep learning curve which people have to climb in order to make full use of the resource. To help mitigate the issue, this project proposes the development of new LLM-powered onboarding and support systems that will positively impact the way support teams operate and improve the user experience. More

  • in

    How machine learning models can amplify inequities in medical diagnosis and treatment

    Prior to receiving a PhD in computer science from MIT in 2017, Marzyeh Ghassemi had already begun to wonder whether the use of AI techniques might enhance the biases that already existed in health care. She was one of the early researchers to take up this issue, and she’s been exploring it ever since. In a new paper, Ghassemi, now an assistant professor in MIT’s Department of Electrical Science and Engineering (EECS), and three collaborators based at the Computer Science and Artificial Intelligence Laboratory, have probed the roots of the disparities that can arise in machine learning, often causing models that perform well overall to falter when it comes to subgroups for which relatively few data have been collected and utilized in the training process. The paper — written by two MIT PhD students, Yuzhe Yang and Haoran Zhang, EECS computer scientist Dina Katabi (the Thuan and Nicole Pham Professor), and Ghassemi — was presented last month at the 40th International Conference on Machine Learning in Honolulu, Hawaii.

    In their analysis, the researchers focused on “subpopulation shifts” — differences in the way machine learning models perform for one subgroup as compared to another. “We want the models to be fair and work equally well for all groups, but instead we consistently observe the presence of shifts among different groups that can lead to inferior medical diagnosis and treatment,” says Yang, who along with Zhang are the two lead authors on the paper. The main point of their inquiry is to determine the kinds of subpopulation shifts that can occur and to uncover the mechanisms behind them so that, ultimately, more equitable models can be developed.

    The new paper “significantly advances our understanding” of the subpopulation shift phenomenon, claims Stanford University computer scientist Sanmi Koyejo. “This research contributes valuable insights for future advancements in machine learning models’ performance on underrepresented subgroups.”

    Camels and cattle

    The MIT group has identified four principal types of shifts — spurious correlations, attribute imbalance, class imbalance, and attribute generalization — which, according to Yang, “have never been put together into a coherent and unified framework. We’ve come up with a single equation that shows you where biases can come from.”

    Biases can, in fact, stem from what the researchers call the class, or from the attribute, or both. To pick a simple example, suppose the task assigned to the machine learning model is to sort images of objects — animals in this case — into two classes: cows and camels. Attributes are descriptors that don’t specifically relate to the class itself. It might turn out, for instance, that all the images used in the analysis show cows standing on grass and camels on sand — grass and sand serving as the attributes here. Given the data available to it, the machine could reach an erroneous conclusion — namely that cows can only be found on grass, not on sand, with the opposite being true for camels. Such a finding would be incorrect, however, giving rise to a spurious correlation, which, Yang explains, is a “special case” among subpopulation shifts — “one in which you have a bias in both the class and the attribute.”

    In a medical setting, one could rely on machine learning models to determine whether a person has pneumonia or not based on an examination of X-ray images. There would be two classes in this situation, one consisting of people who have the lung ailment, another for those who are infection-free. A relatively straightforward case would involve just two attributes: the people getting X-rayed are either female or male. If, in this particular dataset, there were 100 males diagnosed with pneumonia for every one female diagnosed with pneumonia, that could lead to an attribute imbalance, and the model would likely do a better job of correctly detecting pneumonia for a man than for a woman. Similarly, having 1,000 times more healthy (pneumonia-free) subjects than sick ones would lead to a class imbalance, with the model biased toward healthy cases. Attribute generalization is the last shift highlighted in the new study. If your sample contained 100 male patients with pneumonia and zero female subjects with the same illness, you still would like the model to be able to generalize and make predictions about female subjects even though there are no samples in the training data for females with pneumonia.

    The team then took 20 advanced algorithms, designed to carry out classification tasks, and tested them on a dozen datasets to see how they performed across different population groups. They reached some unexpected conclusions: By improving the “classifier,” which is the last layer of the neural network, they were able to reduce the occurrence of spurious correlations and class imbalance, but the other shifts were unaffected. Improvements to the “encoder,” one of the uppermost layers in the neural network, could reduce the problem of attribute imbalance. “However, no matter what we did to the encoder or classifier, we did not see any improvements in terms of attribute generalization,” Yang says, “and we don’t yet know how to address that.”

    Precisely accurate

    There is also the question of assessing how well your model actually works in terms of evenhandedness among different population groups. The metric normally used, called worst-group accuracy or WGA, is based on the assumption that if you can improve the accuracy — of, say, medical diagnosis — for the group that has the worst model performance, you would have improved the model as a whole. “The WGA is considered the gold standard in subpopulation evaluation,” the authors contend, but they made a surprising discovery: boosting worst-group accuracy results in a decrease in what they call “worst-case precision.” In medical decision-making of all sorts, one needs both accuracy — which speaks to the validity of the findings — and precision, which relates to the reliability of the methodology. “Precision and accuracy are both very important metrics in classification tasks, and that is especially true in medical diagnostics,” Yang explains. “You should never trade precision for accuracy. You always need to balance the two.”

    The MIT scientists are putting their theories into practice. In a study they’re conducting with a medical center, they’re looking at public datasets for tens of thousands of patients and hundreds of thousands of chest X-rays, trying to see whether it’s possible for machine learning models to work in an unbiased manner for all populations. That’s still far from the case, even though more awareness has been drawn to this problem, Yang says. “We are finding many disparities across different ages, gender, ethnicity, and intersectional groups.”

    He and his colleagues agree on the eventual goal, which is to achieve fairness in health care among all populations. But before we can reach that point, they maintain, we still need a better understanding of the sources of unfairness and how they permeate our current system. Reforming the system as a whole will not be easy, they acknowledge. In fact, the title of the paper they introduced at the Honolulu conference, “Change is Hard,” gives some indications as to the challenges that they and like-minded researchers face. More

  • in

    A faster way to teach a robot

    Imagine purchasing a robot to perform household tasks. This robot was built and trained in a factory on a certain set of tasks and has never seen the items in your home. When you ask it to pick up a mug from your kitchen table, it might not recognize your mug (perhaps because this mug is painted with an unusual image, say, of MIT’s mascot, Tim the Beaver). So, the robot fails.

    “Right now, the way we train these robots, when they fail, we don’t really know why. So you would just throw up your hands and say, ‘OK, I guess we have to start over.’ A critical component that is missing from this system is enabling the robot to demonstrate why it is failing so the user can give it feedback,” says Andi Peng, an electrical engineering and computer science (EECS) graduate student at MIT.

    Peng and her collaborators at MIT, New York University, and the University of California at Berkeley created a framework that enables humans to quickly teach a robot what they want it to do, with a minimal amount of effort.

    When a robot fails, the system uses an algorithm to generate counterfactual explanations that describe what needed to change for the robot to succeed. For instance, maybe the robot would have been able to pick up the mug if the mug were a certain color. It shows these counterfactuals to the human and asks for feedback on why the robot failed. Then the system utilizes this feedback and the counterfactual explanations to generate new data it uses to fine-tune the robot.

    Fine-tuning involves tweaking a machine-learning model that has already been trained to perform one task, so it can perform a second, similar task.

    The researchers tested this technique in simulations and found that it could teach a robot more efficiently than other methods. The robots trained with this framework performed better, while the training process consumed less of a human’s time.

    This framework could help robots learn faster in new environments without requiring a user to have technical knowledge. In the long run, this could be a step toward enabling general-purpose robots to efficiently perform daily tasks for the elderly or individuals with disabilities in a variety of settings.

    Peng, the lead author, is joined by co-authors Aviv Netanyahu, an EECS graduate student; Mark Ho, an assistant professor at the Stevens Institute of Technology; Tianmin Shu, an MIT postdoc; Andreea Bobu, a graduate student at UC Berkeley; and senior authors Julie Shah, an MIT professor of aeronautics and astronautics and the director of the Interactive Robotics Group in the Computer Science and Artificial Intelligence Laboratory (CSAIL), and Pulkit Agrawal, a professor in CSAIL. The research will be presented at the International Conference on Machine Learning.

    On-the-job training

    Robots often fail due to distribution shift — the robot is presented with objects and spaces it did not see during training, and it doesn’t understand what to do in this new environment.

    One way to retrain a robot for a specific task is imitation learning. The user could demonstrate the correct task to teach the robot what to do. If a user tries to teach a robot to pick up a mug, but demonstrates with a white mug, the robot could learn that all mugs are white. It may then fail to pick up a red, blue, or “Tim-the-Beaver-brown” mug.

    Training a robot to recognize that a mug is a mug, regardless of its color, could take thousands of demonstrations.

    “I don’t want to have to demonstrate with 30,000 mugs. I want to demonstrate with just one mug. But then I need to teach the robot so it recognizes that it can pick up a mug of any color,” Peng says.

    To accomplish this, the researchers’ system determines what specific object the user cares about (a mug) and what elements aren’t important for the task (perhaps the color of the mug doesn’t matter). It uses this information to generate new, synthetic data by changing these “unimportant” visual concepts. This process is known as data augmentation.

    The framework has three steps. First, it shows the task that caused the robot to fail. Then it collects a demonstration from the user of the desired actions and generates counterfactuals by searching over all features in the space that show what needed to change for the robot to succeed.

    The system shows these counterfactuals to the user and asks for feedback to determine which visual concepts do not impact the desired action. Then it uses this human feedback to generate many new augmented demonstrations.

    In this way, the user could demonstrate picking up one mug, but the system would produce demonstrations showing the desired action with thousands of different mugs by altering the color. It uses these data to fine-tune the robot.

    Creating counterfactual explanations and soliciting feedback from the user are critical for the technique to succeed, Peng says.

    From human reasoning to robot reasoning

    Because their work seeks to put the human in the training loop, the researchers tested their technique with human users. They first conducted a study in which they asked people if counterfactual explanations helped them identify elements that could be changed without affecting the task.

    “It was so clear right off the bat. Humans are so good at this type of counterfactual reasoning. And this counterfactual step is what allows human reasoning to be translated into robot reasoning in a way that makes sense,” she says.

    Then they applied their framework to three simulations where robots were tasked with: navigating to a goal object, picking up a key and unlocking a door, and picking up a desired object then placing it on a tabletop. In each instance, their method enabled the robot to learn faster than with other techniques, while requiring fewer demonstrations from users.

    Moving forward, the researchers hope to test this framework on real robots. They also want to focus on reducing the time it takes the system to create new data using generative machine-learning models.

    “We want robots to do what humans do, and we want them to do it in a semantically meaningful way. Humans tend to operate in this abstract space, where they don’t think about every single property in an image. At the end of the day, this is really about enabling a robot to learn a good, human-like representation at an abstract level,” Peng says.

    This research is supported, in part, by a National Science Foundation Graduate Research Fellowship, Open Philanthropy, an Apple AI/ML Fellowship, Hyundai Motor Corporation, the MIT-IBM Watson AI Lab, and the National Science Foundation Institute for Artificial Intelligence and Fundamental Interactions. More

  • in

    A new way to look at data privacy

    Imagine that a team of scientists has developed a machine-learning model that can predict whether a patient has cancer from lung scan images. They want to share this model with hospitals around the world so clinicians can start using it in diagnosis.

    But there’s a problem. To teach their model how to predict cancer, they showed it millions of real lung scan images, a process called training. Those sensitive data, which are now encoded into the inner workings of the model, could potentially be extracted by a malicious agent. The scientists can prevent this by adding noise, or more generic randomness, to the model that makes it harder for an adversary to guess the original data. However, perturbation reduces a model’s accuracy, so the less noise one can add, the better.

    MIT researchers have developed a technique that enables the user to potentially add the smallest amount of noise possible, while still ensuring the sensitive data are protected.

    The researchers created a new privacy metric, which they call Probably Approximately Correct (PAC) Privacy, and built a framework based on this metric that can automatically determine the minimal amount of noise that needs to be added. Moreover, this framework does not need knowledge of the inner workings of a model or its training process, which makes it easier to use for different types of models and applications.

    In several cases, the researchers show that the amount of noise required to protect sensitive data from adversaries is far less with PAC Privacy than with other approaches. This could help engineers create machine-learning models that provably hide training data, while maintaining accuracy in real-world settings.

    “PAC Privacy exploits the uncertainty or entropy of the sensitive data in a meaningful way,  and this allows us to add, in many cases, an order of magnitude less noise. This framework allows us to understand the characteristics of arbitrary data processing and privatize it automatically without artificial modifications. While we are in the early days and we are doing simple examples, we are excited about the promise of this technique,” says Srini Devadas, the Edwin Sibley Webster Professor of Electrical Engineering and co-author of a new paper on PAC Privacy.

    Devadas wrote the paper with lead author Hanshen Xiao, an electrical engineering and computer science graduate student. The research will be presented at the International Cryptography Conference (Crypto 2023).

    Defining privacy

    A fundamental question in data privacy is: How much sensitive data could an adversary recover from a machine-learning model with noise added to it?

    Differential Privacy, one popular privacy definition, says privacy is achieved if an adversary who observes the released model cannot infer whether an arbitrary individual’s data is used for the training processing. But provably preventing an adversary from distinguishing data usage often requires large amounts of noise to obscure it. This noise reduces the model’s accuracy.

    PAC Privacy looks at the problem a bit differently. It characterizes how hard it would be for an adversary to reconstruct any part of randomly sampled or generated sensitive data after noise has been added, rather than only focusing on the distinguishability problem.

    For instance, if the sensitive data are images of human faces, differential privacy would focus on whether the adversary can tell if someone’s face was in the dataset. PAC Privacy, on the other hand, could look at whether an adversary could extract a silhouette — an approximation — that someone could recognize as a particular individual’s face.

    Once they established the definition of PAC Privacy, the researchers created an algorithm that automatically tells the user how much noise to add to a model to prevent an adversary from confidently reconstructing a close approximation of the sensitive data. This algorithm guarantees privacy even if the adversary has infinite computing power, Xiao says.

    To find the optimal amount of noise, the PAC Privacy algorithm relies on the uncertainty, or entropy, in the original data from the viewpoint of the adversary.

    This automatic technique takes samples randomly from a data distribution or a large data pool and runs the user’s machine-learning training algorithm on that subsampled data to produce an output learned model. It does this many times on different subsamplings and compares the variance across all outputs. This variance determines how much noise one must add — a smaller variance means less noise is needed.

    Algorithm advantages

    Different from other privacy approaches, the PAC Privacy algorithm does not need knowledge of the inner workings of a model, or the training process.

    When implementing PAC Privacy, a user can specify their desired level of confidence at the outset. For instance, perhaps the user wants a guarantee that an adversary will not be more than 1 percent confident that they have successfully reconstructed the sensitive data to within 5 percent of its actual value. The PAC Privacy algorithm automatically tells the user the optimal amount of noise that needs to be added to the output model before it is shared publicly, in order to achieve those goals.

    “The noise is optimal, in the sense that if you add less than we tell you, all bets could be off. But the effect of adding noise to neural network parameters is complicated, and we are making no promises on the utility drop the model may experience with the added noise,” Xiao says.

    This points to one limitation of PAC Privacy — the technique does not tell the user how much accuracy the model will lose once the noise is added. PAC Privacy also involves repeatedly training a machine-learning model on many subsamplings of data, so it can be computationally expensive.  

    To improve PAC Privacy, one approach is to modify a user’s machine-learning training process so it is more stable, meaning that the output model it produces does not change very much when the input data is subsampled from a data pool.  This stability would create smaller variances between subsample outputs, so not only would the PAC Privacy algorithm need to be run fewer times to identify the optimal amount of noise, but it would also need to add less noise.

    An added benefit of stabler models is that they often have less generalization error, which means they can make more accurate predictions on previously unseen data, a win-win situation between machine learning and privacy, Devadas adds.

    “In the next few years, we would love to look a little deeper into this relationship between stability and privacy, and the relationship between privacy and generalization error. We are knocking on a door here, but it is not clear yet where the door leads,” he says.

    “Obfuscating the usage of an individual’s data in a model is paramount to protecting their privacy. However, to do so can come at the cost of the datas’ and therefore model’s utility,” says Jeremy Goodsitt, senior machine learning engineer at Capital One, who was not involved with this research. “PAC provides an empirical, black-box solution, which can reduce the added noise compared to current practices while maintaining equivalent privacy guarantees. In addition, its empirical approach broadens its reach to more data consuming applications.”

    This research is funded, in part, by DSTA Singapore, Cisco Systems, Capital One, and a MathWorks Fellowship. More

  • in

    Statistics, operations research, and better algorithms

    In this day and age, many companies and institutions are not just data-driven, but data-intensive. Insurers, health providers, government agencies, and social media platforms are all heavily dependent on data-rich models and algorithms to identify the characteristics of the people who use them, and to nudge their behavior in various ways.

    That doesn’t mean organizations are always using optimal models, however. Determining efficient algorithms is a research area of its own — and one where Rahul Mazumder happens to be a leading expert.

    Mazumder, an associate professor in the MIT Sloan School of Management and an affiliate of the Operations Research Center, works both to expand the techniques of model-building and to refine models that apply to particular problems. His work pertains to a wealth of areas, including statistics and operations research, with applications in finance, health care, advertising, online recommendations, and more.

    “There is engineering involved, there is science involved, there is implementation involved, there is theory involved, it’s at the junction of various disciplines,” says Mazumder, who is also affiliated with the Center for Statistics and Data Science and the MIT-IBM Watson AI Lab.

    There is also a considerable amount of practical-minded judgment, logic, and common-sense decision-making at play, in order to bring the right techniques to bear on any individual task.

    “Statistics is about having data coming from a physical system, or computers, or humans, and you want to make sense of the data,” Mazumder says. “And you make sense of it by building models because that gives some pattern to a dataset. But of course, there is a lot of subjectivity in that. So, there is subjectivity in statistics, but also mathematical rigor.”

    Over roughly the last decade, Mazumder, often working with co-authors, has published about 40 peer-reviewed papers, won multiple academic awards, collaborated with major companies about their work, and helped advise graduate students. For his research and teaching, Mazumder was granted tenure by MIT last year.

    From deep roots to new tools

    Mazumder grew up in Kolkata, India, where his father was a professor at the Indian Statistical Institute and his mother was a schoolteacher. Mazumder received his undergraduate and master’s degrees from the Indian Statistical Institute as well, although without really focusing on the same areas as his father, whose work was in fluid mechanics.

    For his doctoral work, Mazumder attended Stanford University, where he earned his PhD in 2012. After a year as a postdoc at MIT’s Operations Research Center, he joined the faculty at Columbia University, then moved to MIT in 2015.

    While Mazumder’s work has many facets, his research portfolio does have notable central achievements. Mazumder has helped combine ideas from two branches of optimization to facilitate addressing computational problems in statistics. One of these branches, discrete optimization, uses discrete variables — integers — to find the best candidate among a finite set of options. This can relate to operational efficiency: What is the shortest route someone might take while making a designated set of stops? Convex optimization, on the other hand, encompasses an array of algorithms that can obtain the best solution for what Mazumder calls “nicely behaved” mathematical functions. They are typically applied to optimize continuous decisions in financial portfolio allocation and health care outcomes, among other things.

    In some recent papers, such as “Fast best subset selection: Coordinate descent and local combinatorial optimization algorithms,” co-authored with Hussein Hazimeh and published in Operations Research in 2020, and in “Sparse regression at scale: branch-and-bound rooted in first-order optimization,” co-authored with Hazimeh and A. Saab and published in Mathematical Programming in 2022, Mazumder has found ways to combine ideas from the two branches.

    “The tools and techniques we are using are new for the class of statistical problems because we are combining different developments in convex optimization and exploring that within discrete optimization,” Mazumder says.

    As new as these tools are, however, Mazumder likes working on techniques that “have old roots,” as he puts it. The two types of optimization methods were considered less separate in the 1950s or 1960s, he says, then grew apart.

    “I like to go back and see how things developed,” Mazumder says. “If I look back in history at [older] papers, it’s actually very fascinating. One thing was developed, another was developed, another was developed kind of independently, and after a while you see connections across them. If I go back, I see some parallels. And that actually helps in my thought process.”

    Predictions and parsimony

    Mazumder’s work is often aimed at simplifying the model or algorithm being applied to a problem. In some instances, bigger models would require enormous amounts of processing power, so simpler methods can provide equally good results while using fewer resources. In other cases — ranging from the finance and tech firms Mazumder has sometimes collaborated with — simpler models may work better by having fewer moving parts.

    “There is a notion of parsimony involved,” Mazumder says. Genomic studies aim to find particularly influential genes; similarly, tech giants may benefit from simpler models of consumer behavior, not more complex ones, when they are recommending a movie to you.

    Very often, Mazumder says, modeling “is a very large-scale prediction problem. But we don’t think all the features or attributes are going to be important. A small collection is going to be important. Why? Because if you think about movies, there are not really 20,000 different movies; there are genres of movies. If you look at individual users, there are hundreds of millions of users, but really they are grouped together into cliques. Can you capture the parsimony in a model?”

    One part of his career that does not lend itself to parsimony, Mazumder feels, is crediting others. In conversation he emphasizes how grateful he is to his mentors in academia, and how much of his work is developed in concert with collaborators and, in particular, his students at MIT. 

    “I really, really like working with my students,” Mazumder says. “I perceive my students as my colleagues. Some of these problems, I thought they could not be solved, but then we just made it work. Of course, no method is perfect. But the fact we can use ideas from different areas in optimization with very deep roots, to address problems of core statistics and machine learning interest, is very exciting.”

    Teaching and doing research at MIT, Mazumder says, allows him to push forward on difficult problems — while also being pushed along by the interest and work of others around him.

    “MIT is a very vibrant community,” Mazumder says. “The thing I find really fascinating is, people here are very driven. They want to make a change in whatever area they are working in. And I also feel motivated to do this.” More

  • in

    Learning the language of molecules to predict their properties

    Discovering new materials and drugs typically involves a manual, trial-and-error process that can take decades and cost millions of dollars. To streamline this process, scientists often use machine learning to predict molecular properties and narrow down the molecules they need to synthesize and test in the lab.

    Researchers from MIT and the MIT-Watson AI Lab have developed a new, unified framework that can simultaneously predict molecular properties and generate new molecules much more efficiently than these popular deep-learning approaches.

    To teach a machine-learning model to predict a molecule’s biological or mechanical properties, researchers must show it millions of labeled molecular structures — a process known as training. Due to the expense of discovering molecules and the challenges of hand-labeling millions of structures, large training datasets are often hard to come by, which limits the effectiveness of machine-learning approaches.

    By contrast, the system created by the MIT researchers can effectively predict molecular properties using only a small amount of data. Their system has an underlying understanding of the rules that dictate how building blocks combine to produce valid molecules. These rules capture the similarities between molecular structures, which helps the system generate new molecules and predict their properties in a data-efficient manner.

    This method outperformed other machine-learning approaches on both small and large datasets, and was able to accurately predict molecular properties and generate viable molecules when given a dataset with fewer than 100 samples.

    “Our goal with this project is to use some data-driven methods to speed up the discovery of new molecules, so you can train a model to do the prediction without all of these cost-heavy experiments,” says lead author Minghao Guo, a computer science and electrical engineering (EECS) graduate student.

    Guo’s co-authors include MIT-IBM Watson AI Lab research staff members Veronika Thost, Payel Das, and Jie Chen; recent MIT graduates Samuel Song ’23 and Adithya Balachandran ’23; and senior author Wojciech Matusik, a professor of electrical engineering and computer science and a member of the MIT-IBM Watson AI Lab, who leads the Computational Design and Fabrication Group within the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). The research will be presented at the International Conference for Machine Learning.

    Learning the language of molecules

    To achieve the best results with machine-learning models, scientists need training datasets with millions of molecules that have similar properties to those they hope to discover. In reality, these domain-specific datasets are usually very small. So, researchers use models that have been pretrained on large datasets of general molecules, which they apply to a much smaller, targeted dataset. However, because these models haven’t acquired much domain-specific knowledge, they tend to perform poorly.

    The MIT team took a different approach. They created a machine-learning system that automatically learns the “language” of molecules — what is known as a molecular grammar — using only a small, domain-specific dataset. It uses this grammar to construct viable molecules and predict their properties.

    In language theory, one generates words, sentences, or paragraphs based on a set of grammar rules. You can think of a molecular grammar the same way. It is a set of production rules that dictate how to generate molecules or polymers by combining atoms and substructures.

    Just like a language grammar, which can generate a plethora of sentences using the same rules, one molecular grammar can represent a vast number of molecules. Molecules with similar structures use the same grammar production rules, and the system learns to understand these similarities.

    Since structurally similar molecules often have similar properties, the system uses its underlying knowledge of molecular similarity to predict properties of new molecules more efficiently. 

    “Once we have this grammar as a representation for all the different molecules, we can use it to boost the process of property prediction,” Guo says.

    The system learns the production rules for a molecular grammar using reinforcement learning — a trial-and-error process where the model is rewarded for behavior that gets it closer to achieving a goal.

    But because there could be billions of ways to combine atoms and substructures, the process to learn grammar production rules would be too computationally expensive for anything but the tiniest dataset.

    The researchers decoupled the molecular grammar into two parts. The first part, called a metagrammar, is a general, widely applicable grammar they design manually and give the system at the outset. Then it only needs to learn a much smaller, molecule-specific grammar from the domain dataset. This hierarchical approach speeds up the learning process.

    Big results, small datasets

    In experiments, the researchers’ new system simultaneously generated viable molecules and polymers, and predicted their properties more accurately than several popular machine-learning approaches, even when the domain-specific datasets had only a few hundred samples. Some other methods also required a costly pretraining step that the new system avoids.

    The technique was especially effective at predicting physical properties of polymers, such as the glass transition temperature, which is the temperature required for a material to transition from solid to liquid. Obtaining this information manually is often extremely costly because the experiments require extremely high temperatures and pressures.

    To push their approach further, the researchers cut one training set down by more than half — to just 94 samples. Their model still achieved results that were on par with methods trained using the entire dataset.

    “This grammar-based representation is very powerful. And because the grammar itself is a very general representation, it can be deployed to different kinds of graph-form data. We are trying to identify other applications beyond chemistry or material science,” Guo says.

    In the future, they also want to extend their current molecular grammar to include the 3D geometry of molecules and polymers, which is key to understanding the interactions between polymer chains. They are also developing an interface that would show a user the learned grammar production rules and solicit feedback to correct rules that may be wrong, boosting the accuracy of the system.

    This work is funded, in part, by the MIT-IBM Watson AI Lab and its member company, Evonik. More

  • in

    Day of AI curriculum meets the moment

    MIT Responsible AI for Social Empowerment and Education (RAISE) recently celebrated the second annual Day of AI with two flagship local events. The Edward M. Kennedy Institute for the U.S. Senate in Boston hosted a human rights and data policy-focused event that was streamed worldwide. Dearborn STEM Academy in Roxbury, Massachusetts, hosted a student workshop in collaboration with Amazon Future Engineer. With over 8,000 registrations across all 50 U.S. states and 108 countries in 2023, participation in Day of AI has more than doubled since its inaugural year.

    Day of AI is a free curriculum of lessons and hands-on activities designed to teach kids of all ages and backgrounds the basics and responsible use of artificial intelligence, designed by researchers at MIT RAISE. This year, resources were available for educators to run at any time and in any increments they chose. The curriculum included five new modules to address timely topics like ChatGPT in School, Teachable Machines, AI and Social Media, Data Science and Me, and more. A collaboration with the International Society for Technology in Education also introduced modules for early elementary students. Educators across the world shared photos, videos, and stories of their students’ engagement, expressing excitement and even relief over the accessible lessons.

    Professor Cynthia Breazeal, director of RAISE, dean for digital learning at MIT, and head of the MIT Media Lab’s Personal Robots research group, said, “It’s been a year of extraordinary advancements in AI, and with that comes necessary conversations and concerns about who and what this technology is for. With our Day of AI events, we want to celebrate the teachers and students who are putting in the work to make sure that AI is for everyone.”

    Reflecting community values and protecting digital citizens

    Play video

    On May 18, 2023, MIT RAISE hosted a global Day of AI celebration featuring a flagship local event focused on human rights and data policy at the Edward M. Kennedy Institute for the U.S. Senate. Students from the Warren Prescott Middle School and New Mission High School heard from speakers the City of Boston, Liberty Mutual, and MIT to discuss the many benefits and challenges of artificial intelligence education. Video: MIT Open Learning

    MIT President Sally Kornbluth welcomed students from Warren Prescott Middle School and New Mission High School to the Day of AI program at the Edward M. Kennedy Institute. Kornbluth reflected on the exciting potential of AI, along with the ethical considerations society needs to be responsible for.

    “AI has the potential to do all kinds of fantastic things, including driving a car, helping us with the climate crisis, improving health care, and designing apps that we can’t even imagine yet. But what we have to make sure it doesn’t do is cause harm to individuals, to communities, to us — society as a whole,” she said.

    This theme resonated with each of the event speakers, whose jobs spanned the sectors of education, government, and business. Yo Deshpande, technologist for the public realm, and Michael Lawrence Evans, program director of new urban mechanics from the Boston Mayor’s Office, shared how Boston thinks about using AI to improve city life in ways that are “equitable, accessible, and delightful.” Deshpande said, “We have the opportunity to explore not only how AI works, but how using AI can line up with our values, the way we want to be in the world, and the way we want to be in our community.”

    Adam L’Italien, chief innovation officer at Liberty Mutual Insurance (one of Day of AI’s founding sponsors), compared our present moment with AI technologies to the early days of personal computers and internet connection. “Exposure to emerging technologies can accelerate progress in the world and in your own lives,” L’Italien said, while recognizing that the AI development process needs to be inclusive and mitigate biases.

    Human policies for artificial intelligence

    So how does society address these human rights concerns about AI? Marc Aidinoff ’21, former White House Office of Science and Technology Policy chief of staff, led a discussion on how government policy can influence the parameters of how technology is developed and used, like the Blueprint for an AI Bill of Rights. Aidinoff said, “The work of building the world you want to see is far harder than building the technical AI system … How do you work with other people and create a collective vision for what we want to do?” Warren Prescott Middle School students described how AI could be used to solve problems that humans couldn’t. But they also shared their concerns that AI could affect data privacy, learning deficits, social media addiction, job displacement, and propaganda.

    In a mock U.S. Senate trial activity designed by Daniella DiPaola, PhD student at the MIT Media Lab, the middle schoolers investigated what rights might be undermined by AI in schools, hospitals, law enforcement, and corporations. Meanwhile, New Mission High School students workshopped the ideas behind bill S.2314, the Social Media Addiction Reduction Technology (SMART) Act, in an activity designed by Raechel Walker, graduate research assistant in the Personal Robots Group, and Matt Taylor, research assistant at the Media Lab. They discussed what level of control could or should be introduced at the parental, educational, and governmental levels to reduce the risks of internet addiction.

    “Alexa, how do I program AI?”

    Play video

    The 2023 Day of AI celebration featured a flagship local event at the Dearborn STEM Academy in Roxbury in collaboration with Amazon Future Engineer. Students participated in a hands-on activity using MIT App Inventor as part of Day of AI’s Alexa lesson. Video: MIT Open Learning

    At Dearborn STEM Academy, Amazon Future Engineer helped students work through the Intro to Voice AI curriculum module in real-time. Students used MIT App Inventor to code basic commands for Alexa. In an interview with WCVB, Principal Darlene Marcano said, “It’s important that we expose our students to as many different experiences as possible. The students that are participating are on track to be future computer scientists and engineers.”

    Breazeal told Dearborn students, “We want you to have an informed voice about how you want AI to be used in society. We want you to feel empowered that you can shape the world. You can make things with AI to help make a better world and a better community.”

    Rohit Prasad ’08, senior vice president and head scientist for Alexa at Amazon, and Victor Reinoso ’97, global director of philanthropic education initiatives at Amazon, also joined the event. “Amazon and MIT share a commitment to helping students discover a world of possibilities through STEM and AI education,” said Reinoso. “There’s a lot of current excitement around the technological revolution with generative AI and large language models, so we’re excited to help students explore careers of the future and navigate the pathways available to them.” To highlight their continued investment in the local community and the school program, Amazon donated a $25,000 Innovation and Early College Pathways Program Grant to the Boston Public School system.

    Day of AI down under

    Not only was the Day of AI program widely adopted across the globe, Australian educators were inspired to adapt their own regionally specific curriculum. An estimated 161,000 AI professionals will be needed in Australia by 2030, according to the National Artificial Intelligence Center in the Commonwealth Scientific and Industrial Research Organization (CSIRO), an Australian government agency and Day of AI Australia project partner. CSIRO worked with the University of New South Wales to develop supplementary educational resources on AI ethics and machine learning. Day of AI Australia reached 85,000 students at 400-plus secondary schools this year, sparking curiosity in the next generation of AI experts.

    The interest in AI is accelerating as fast as the technology is being developed. Day of AI offers a unique opportunity for K-12 students to shape our world’s digital future and their own.

    “I hope that some of you will decide to be part of this bigger effort to help us figure out the best possible answers to questions that are raised by AI,” Kornbluth told students at the Edward M. Kennedy Institute. “We’re counting on you, the next generation, to learn how AI works and help make sure it’s for everyone.” More

  • in

    Bringing the social and ethical responsibilities of computing to the forefront

    There has been a remarkable surge in the use of algorithms and artificial intelligence to address a wide range of problems and challenges. While their adoption, particularly with the rise of AI, is reshaping nearly every industry sector, discipline, and area of research, such innovations often expose unexpected consequences that involve new norms, new expectations, and new rules and laws.

    To facilitate deeper understanding, the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative in the MIT Schwarzman College of Computing, recently brought together social scientists and humanists with computer scientists, engineers, and other computing faculty for an exploration of the ways in which the broad applicability of algorithms and AI has presented both opportunities and challenges in many aspects of society.

    “The very nature of our reality is changing. AI has the ability to do things that until recently were solely the realm of human intelligence — things that can challenge our understanding of what it means to be human,” remarked Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing, in his opening address at the inaugural SERC Symposium. “This poses philosophical, conceptual, and practical questions on a scale not experienced since the start of the Enlightenment. In the face of such profound change, we need new conceptual maps for navigating the change.”

    The symposium offered a glimpse into the vision and activities of SERC in both research and education. “We believe our responsibility with SERC is to educate and equip our students and enable our faculty to contribute to responsible technology development and deployment,” said Georgia Perakis, the William F. Pounds Professor of Management in the MIT Sloan School of Management, co-associate dean of SERC, and the lead organizer of the symposium. “We’re drawing from the many strengths and diversity of disciplines across MIT and beyond and bringing them together to gain multiple viewpoints.”

    Through a succession of panels and sessions, the symposium delved into a variety of topics related to the societal and ethical dimensions of computing. In addition, 37 undergraduate and graduate students from a range of majors, including urban studies and planning, political science, mathematics, biology, electrical engineering and computer science, and brain and cognitive sciences, participated in a poster session to exhibit their research in this space, covering such topics as quantum ethics, AI collusion in storage markets, computing waste, and empowering users on social platforms for better content credibility.

    Showcasing a diversity of work

    In three sessions devoted to themes of beneficent and fair computing, equitable and personalized health, and algorithms and humans, the SERC Symposium showcased work by 12 faculty members across these domains.

    One such project from a multidisciplinary team of archaeologists, architects, digital artists, and computational social scientists aimed to preserve endangered heritage sites in Afghanistan with digital twins. The project team produced highly detailed interrogable 3D models of the heritage sites, in addition to extended reality and virtual reality experiences, as learning resources for audiences that cannot access these sites.

    In a project for the United Network for Organ Sharing, researchers showed how they used applied analytics to optimize various facets of an organ allocation system in the United States that is currently undergoing a major overhaul in order to make it more efficient, equitable, and inclusive for different racial, age, and gender groups, among others.

    Another talk discussed an area that has not yet received adequate public attention: the broader implications for equity that biased sensor data holds for the next generation of models in computing and health care.

    A talk on bias in algorithms considered both human bias and algorithmic bias, and the potential for improving results by taking into account differences in the nature of the two kinds of bias.

    Other highlighted research included the interaction between online platforms and human psychology; a study on whether decision-makers make systemic prediction mistakes on the available information; and an illustration of how advanced analytics and computation can be leveraged to inform supply chain management, operations, and regulatory work in the food and pharmaceutical industries.

    Improving the algorithms of tomorrow

    “Algorithms are, without question, impacting every aspect of our lives,” said Asu Ozdaglar, deputy dean of academics for the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science, in kicking off a panel she moderated on the implications of data and algorithms.

    “Whether it’s in the context of social media, online commerce, automated tasks, and now a much wider range of creative interactions with the advent of generative AI tools and large language models, there’s little doubt that much more is to come,” Ozdaglar said. “While the promise is evident to all of us, there’s a lot to be concerned as well. This is very much time for imaginative thinking and careful deliberation to improve the algorithms of tomorrow.”

    Turning to the panel, Ozdaglar asked experts from computing, social science, and data science for insights on how to understand what is to come and shape it to enrich outcomes for the majority of humanity.

    Sarah Williams, associate professor of technology and urban planning at MIT, emphasized the critical importance of comprehending the process of how datasets are assembled, as data are the foundation for all models. She also stressed the need for research to address the potential implication of biases in algorithms that often find their way in through their creators and the data used in their development. “It’s up to us to think about our own ethical solutions to these problems,” she said. “Just as it’s important to progress with the technology, we need to start the field of looking at these questions of what biases are in the algorithms? What biases are in the data, or in that data’s journey?”

    Shifting focus to generative models and whether the development and use of these technologies should be regulated, the panelists — which also included MIT’s Srini Devadas, professor of electrical engineering and computer science, John Horton, professor of information technology, and Simon Johnson, professor of entrepreneurship — all concurred that regulating open-source algorithms, which are publicly accessible, would be difficult given that regulators are still catching up and struggling to even set guardrails for technology that is now 20 years old.

    Returning to the question of how to effectively regulate the use of these technologies, Johnson proposed a progressive corporate tax system as a potential solution. He recommends basing companies’ tax payments on their profits, especially for large corporations whose massive earnings go largely untaxed due to offshore banking. By doing so, Johnson said that this approach can serve as a regulatory mechanism that discourages companies from trying to “own the entire world” by imposing disincentives.

    The role of ethics in computing education

    As computing continues to advance with no signs of slowing down, it is critical to educate students to be intentional in the social impact of the technologies they will be developing and deploying into the world. But can one actually be taught such things? If so, how?

    Caspar Hare, professor of philosophy at MIT and co-associate dean of SERC, posed this looming question to faculty on a panel he moderated on the role of ethics in computing education. All experienced in teaching ethics and thinking about the social implications of computing, each panelist shared their perspective and approach.

    A strong advocate for the importance of learning from history, Eden Medina, associate professor of science, technology, and society at MIT, said that “often the way we frame computing is that everything is new. One of the things that I do in my teaching is look at how people have confronted these issues in the past and try to draw from them as a way to think about possible ways forward.” Medina regularly uses case studies in her classes and referred to a paper written by Yale University science historian Joanna Radin on the Pima Indian Diabetes Dataset that raised ethical issues on the history of that particular collection of data that many don’t consider as an example of how decisions around technology and data can grow out of very specific contexts.

    Milo Phillips-Brown, associate professor of philosophy at Oxford University, talked about the Ethical Computing Protocol that he co-created while he was a SERC postdoc at MIT. The protocol, a four-step approach to building technology responsibly, is designed to train computer science students to think in a better and more accurate way about the social implications of technology by breaking the process down into more manageable steps. “The basic approach that we take very much draws on the fields of value-sensitive design, responsible research and innovation, participatory design as guiding insights, and then is also fundamentally interdisciplinary,” he said.

    Fields such as biomedicine and law have an ethics ecosystem that distributes the function of ethical reasoning in these areas. Oversight and regulation are provided to guide front-line stakeholders and decision-makers when issues arise, as are training programs and access to interdisciplinary expertise that they can draw from. “In this space, we have none of that,” said John Basl, associate professor of philosophy at Northeastern University. “For current generations of computer scientists and other decision-makers, we’re actually making them do the ethical reasoning on their own.” Basl commented further that teaching core ethical reasoning skills across the curriculum, not just in philosophy classes, is essential, and that the goal shouldn’t be for every computer scientist be a professional ethicist, but for them to know enough of the landscape to be able to ask the right questions and seek out the relevant expertise and resources that exists.

    After the final session, interdisciplinary groups of faculty, students, and researchers engaged in animated discussions related to the issues covered throughout the day during a reception that marked the conclusion of the symposium. More