More stories

  • in

    Seven from MIT elected to American Academy of Arts and Sciences for 2022

    Seven MIT faculty members are among more than 250 leaders from academia, the arts, industry, public policy, and research elected to the American Academy of Arts and Sciences, the academy announced Thursday.

    One of the nation’s most prestigious honorary societies, the academy is also a leading center for independent policy research. Members contribute to academy publications, as well as studies of science and technology policy, energy and global security, social policy and American institutions, the humanities and culture, and education.

    Those elected from MIT this year are:

    Alberto Abadie, professor of economics and associate director of the Institute for Data, Systems, and Society
    Regina Barzilay, the School of Engineering Distinguished Professor for AI and Health
    Roman Bezrukavnikov, professor of mathematics
    Michale S. Fee, the Glen V. and Phyllis F. Dorflinger Professor and head of the Department of Brain and Cognitive Sciences
    Dina Katabi, the Thuan and Nicole Pham Professor
    Ronald T. Raines, the Roger and Georges Firmenich Professor of Natural Products Chemistry
    Rebecca R. Saxe, the John W. Jarve Professor of Brain and Cognitive Sciences

    “We are celebrating a depth of achievements in a breadth of areas,” says David Oxtoby, president of the American Academy. “These individuals excel in ways that excite us and inspire us at a time when recognizing excellence, commending expertise, and working toward the common good is absolutely essential to realizing a better future.”

    Since its founding in 1780, the academy has elected leading thinkers from each generation, including George Washington and Benjamin Franklin in the 18th century, Maria Mitchell and Daniel Webster in the 19th century, and Toni Morrison and Albert Einstein in the 20th century. The current membership includes more than 250 Nobel and Pulitzer Prize winners. More

  • in

    3 Questions: Designing software for research ethics

    Data are arguably the world’s hottest form of currency, clocking in zeros and ones that hold ever more weight than before. But with all of our personal information being crunched into dynamite for enterprise solutions and the like, with a lack of consumer data protection, are we all getting left behind? 

    Jonathan Zong, a PhD candidate in electrical engineering and computer science at MIT, and an affiliate of the Computer Science and Artificial Intelligence Laboratory, thinks consent can be baked into the design of the software that gathers our data for online research. He created Bartleby, a system for debriefing research participants and eliciting their views about social media research that involved them. Using Bartleby, he says, researchers can automatically direct each of their study participants to a website where they can learn about their involvement in research, view what data researchers collected about them, and give feedback. Most importantly, participants can use the website to opt out and request to delete their data.  

    Zong and his co-author, Nathan Matias SM ’13, PhD ’17, evaluated Bartleby by debriefing thousands of participants in observational and experimental studies on Twitter and Reddit. They found that Bartleby addresses procedural concerns by creating opportunities for participants to exercise autonomy, and the tool enabled substantive, value-driven conversations about participant voice and power. Here, Zong discusses the implications of their recent work as well as the future of social, ethical, and responsible computing.

    Q: Many leading tech ethicists and policymakers believe it’s impossible to keep people informed about their involvement in research and how their data are used. How has your work changed that?

    A: When Congress asked Mark Zuckerberg in 2018 about Facebook’s obligations to keep users informed about how their data is used, his answer was effectively that all users had the opportunity to read the privacy policy, and that being any clearer would be too difficult. Tech elites often blanket-statement that ethics is complicated, and proceed with their objective anyway. Many have claimed it’s impossible to fulfill ethical responsibilities to users at scale, so why try? But by creating Bartleby, a system for debriefing participants and eliciting their views about studies that involved them, we built something that shows that it’s not only very possible, but actually pretty easy to do. In a lot of situations, letting people know we want their data and explaining why we think it’s worth it is the bare minimum we could be doing.

    Q: Can ethical challenges be solved with a software tool?

    A: Off-the-shelf software actually can make a meaningful difference in respecting people’s autonomy. Ethics regulations almost never require a debriefing process for online studies. But because we used Bartleby, people had a chance to make an informed decision. It’s a chance they otherwise wouldn’t have had.

    At the same time, we realized that using Bartleby shined a light on deeper ethics questions that required substantive reflection. For example, most people are just trying to go about their lives and ignore the messages we send them, while others reply with concerns that aren’t even always about the research. Even if indirectly, these instances help signal nuances that research participants care about.

    Where might our values as researchers differ from participants’ values? How do the power structures that shape researchers’ interaction with users and communities affect our ability to see those differences? Using software to deliver ethics procedures helps bring these questions to light. But rather than expecting definitive answers that work in every situation, we should be thinking about how using software to create opportunities for participant voice and power challenges and invites us to reflect on how we address conflicting values.

    Q: How does your approach to design help suggest a way forward for social, ethical, and responsible computing?

    A: In addition to presenting the software tool, our peer-reviewed article on Bartleby also demonstrates a theoretical framework for data ethics, inspired by ideas in feminist philosophy. Because my work spans software design, empirical social science, and philosophy, I often think about the things I want people to take away in terms of interdisciplinary bridges I want to build. 

    I hope people look at Bartleby and see that ethics is an exciting area for technical innovation that can be tested empirically — guided by a clear-headed understanding of values. Umberto Eco, a philosopher, wrote that “form must not be a vehicle for thought, it must be a way of thinking.” In other words, designing software isn’t just about putting ideas we’ve already had into a computational form. Design is also a way we can think new ideas into existence, produce new ways of knowing and doing, and imagine alternative futures. More

  • in

    Estimating the informativeness of data

    Not all data are created equal. But how much information is any piece of data likely to contain? This question is central to medical testing, designing scientific experiments, and even to everyday human learning and thinking. MIT researchers have developed a new way to solve this problem, opening up new applications in medicine, scientific discovery, cognitive science, and artificial intelligence.

    In theory, the 1948 paper, “A Mathematical Theory of Communication,” by the late MIT Professor Emeritus Claude Shannon answered this question definitively. One of Shannon’s breakthrough results is the idea of entropy, which lets us quantify the amount of information inherent in any random object, including random variables that model observed data. Shannon’s results created the foundations of information theory and modern telecommunications. The concept of entropy has also proven central to computer science and machine learning.

    The challenge of estimating entropy

    Unfortunately, the use of Shannon’s formula can quickly become computationally intractable. It requires precisely calculating the probability of the data, which in turn requires calculating every possible way the data could have arisen under a probabilistic model. If the data-generating process is very simple — for example, a single toss of a coin or roll of a loaded die — then calculating entropies is straightforward. But consider the problem of medical testing, where a positive test result is the result of hundreds of interacting variables, all unknown. With just 10 unknowns, there are already 1,000 possible explanations for the data. With a few hundred, there are more possible explanations than atoms in the known universe, which makes calculating the entropy exactly an unmanageable problem.

    MIT researchers have developed a new method to estimate good approximations to many information quantities such as Shannon entropy by using probabilistic inference. The work appears in a paper presented at AISTATS 2022 by authors Feras Saad ’16, MEng ’16, a PhD candidate in electrical engineering and computer science; Marco-Cusumano Towner PhD ’21; and Vikash Mansinghka ’05, MEng ’09, PhD ’09, a principal research scientist in the Department of Brain and Cognitive Sciences. The key insight is, rather than enumerate all explanations, to instead use probabilistic inference algorithms to first infer which explanations are probable and then use these probable explanations to construct high-quality entropy estimates. The paper shows that this inference-based approach can be much faster and more accurate than previous approaches.

    Estimating entropy and information in a probabilistic model is fundamentally hard because it often requires solving a high-dimensional integration problem. Many previous works have developed estimators of these quantities for certain special cases, but the new estimators of entropy via inference (EEVI) offer the first approach that can deliver sharp upper and lower bounds on a broad set of information-theoretic quantities. An upper and lower bound means that although we don’t know the true entropy, we can get a number that is smaller than it and a number that is higher than it.

    “The upper and lower bounds on entropy delivered by our method are particularly useful for three reasons,” says Saad. “First, the difference between the upper and lower bounds gives a quantitative sense of how confident we should be about the estimates. Second, by using more computational effort we can drive the difference between the two bounds to zero, which ‘squeezes’ the true value with a high degree of accuracy. Third, we can compose these bounds to form estimates of many other quantities that tell us how informative different variables in a model are of one another.”

    Solving fundamental problems with data-driven expert systems

    Saad says he is most excited about the possibility that this method gives for querying probabilistic models in areas like machine-assisted medical diagnoses. He says one goal of the EEVI method is to be able to solve new queries using rich generative models for things like liver disease and diabetes that have already been developed by experts in the medical domain. For example, suppose we have a patient with a set of observed attributes (height, weight, age, etc.) and observed symptoms (nausea, blood pressure, etc.). Given these attributes and symptoms, EEVI can be used to help determine which medical tests for symptoms the physician should conduct to maximize information about the absence or presence of a given liver disease (like cirrhosis or primary biliary cholangitis).

    For insulin diagnosis, the authors showed how to use the method for computing optimal times to take blood glucose measurements that maximize information about a patient’s insulin sensitivity, given an expert-built probabilistic model of insulin metabolism and the patient’s personalized meal and medication schedule. As routine medical tracking like glucose monitoring moves away from doctor’s offices and toward wearable devices, there are even more opportunities to improve data acquisition, if the value of the data can be estimated accurately in advance.

    Vikash Mansinghka, senior author on the paper, adds, “We’ve shown that probabilistic inference algorithms can be used to estimate rigorous bounds on information measures that AI engineers often think of as intractable to calculate. This opens up many new applications. It also shows that inference may be more computationally fundamental than we thought. It also helps to explain how human minds might be able to estimate the value of information so pervasively, as a central building block of everyday cognition, and help us engineer AI expert systems that have these capabilities.”

    The paper, “Estimators of Entropy and Information via Inference in Probabilistic Models,” was presented at AISTATS 2022. More

  • in

    A new state of the art for unsupervised vision

    Labeling data can be a chore. It’s the main source of sustenance for computer-vision models; without it, they’d have a lot of difficulty identifying objects, people, and other important image characteristics. Yet producing just an hour of tagged and labeled data can take a whopping 800 hours of human time. Our high-fidelity understanding of the world develops as machines can better perceive and interact with our surroundings. But they need more help.

    Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), Microsoft, and Cornell University have attempted to solve this problem plaguing vision models by creating “STEGO,” an algorithm that can jointly discover and segment objects without any human labels at all, down to the pixel.

    STEGO learns something called “semantic segmentation” — fancy speak for the process of assigning a label to every pixel in an image. Semantic segmentation is an important skill for today’s computer-vision systems because images can be cluttered with objects. Even more challenging is that these objects don’t always fit into literal boxes; algorithms tend to work better for discrete “things” like people and cars as opposed to “stuff” like vegetation, sky, and mashed potatoes. A previous system might simply perceive a nuanced scene of a dog playing in the park as just a dog, but by assigning every pixel of the image a label, STEGO can break the image into its main ingredients: a dog, sky, grass, and its owner.

    Play video

    A new state of the art for unsupervised computer vision

    Assigning every single pixel of the world a label is ambitious — especially without any kind of feedback from humans. The majority of algorithms today get their knowledge from mounds of labeled data, which can take painstaking human-hours to source. Just imagine the excitement of labeling every pixel of 100,000 images! To discover these objects without a human’s helpful guidance, STEGO looks for similar objects that appear throughout a dataset. It then associates these similar objects together to construct a consistent view of the world across all of the images it learns from.

    Seeing the world

    Machines that can “see” are crucial for a wide array of new and emerging technologies like self-driving cars and predictive modeling for medical diagnostics. Since STEGO can learn without labels, it can detect objects in many different domains, even those that humans don’t yet understand fully. 

    “If you’re looking at oncological scans, the surface of planets, or high-resolution biological images, it’s hard to know what objects to look for without expert knowledge. In emerging domains, sometimes even human experts don’t know what the right objects should be,” says Mark Hamilton, a PhD student in electrical engineering and computer science at MIT, research affiliate of MIT CSAIL, software engineer at Microsoft, and lead author on a new paper about STEGO. “In these types of situations where you want to design a method to operate at the boundaries of science, you can’t rely on humans to figure it out before machines do.”

    STEGO was tested on a slew of visual domains spanning general images, driving images, and high-altitude aerial photographs. In each domain, STEGO was able to identify and segment relevant objects that were closely aligned with human judgments. STEGO’s most diverse benchmark was the COCO-Stuff dataset, which is made up of diverse images from all over the world, from indoor scenes to people playing sports to trees and cows. In most cases, the previous state-of-the-art system could capture a low-resolution gist of a scene, but struggled on fine-grained details: A human was a blob, a motorcycle was captured as a person, and it couldn’t recognize any geese. On the same scenes, STEGO doubled the performance of previous systems and discovered concepts like animals, buildings, people, furniture, and many others.

    STEGO not only doubled the performance of prior systems on the COCO-Stuff benchmark, but made similar leaps forward in other visual domains. When applied to driverless car datasets, STEGO successfully segmented out roads, people, and street signs with much higher resolution and granularity than previous systems. On images from space, the system broke down every single square foot of the surface of the Earth into roads, vegetation, and buildings. 

    Connecting the pixels

    STEGO — which stands for “Self-supervised Transformer with Energy-based Graph Optimization” — builds on top of the DINO algorithm, which learned about the world through 14 million images from the ImageNet database. STEGO refines the DINO backbone through a learning process that mimics our own way of stitching together pieces of the world to make meaning. 

    For example, you might consider two images of dogs walking in the park. Even though they’re different dogs, with different owners, in different parks, STEGO can tell (without humans) how each scene’s objects relate to each other. The authors even probe STEGO’s mind to see how each little, brown, furry thing in the images are similar, and likewise with other shared objects like grass and people. By connecting objects across images, STEGO builds a consistent view of the word.

    “The idea is that these types of algorithms can find consistent groupings in a largely automated fashion so we don’t have to do that ourselves,” says Hamilton. “It might have taken years to understand complex visual datasets like biological imagery, but if we can avoid spending 1,000 hours combing through data and labeling it, we can find and discover new information that we might have missed. We hope this will help us understand the visual word in a more empirically grounded way.”

    Looking ahead

    Despite its improvements, STEGO still faces certain challenges. One is that labels can be arbitrary. For example, the labels of the COCO-Stuff dataset distinguish between “food-things” like bananas and chicken wings, and “food-stuff” like grits and pasta. STEGO doesn’t see much of a distinction there. In other cases, STEGO was confused by odd images — like one of a banana sitting on a phone receiver — where the receiver was labeled “foodstuff,” instead of “raw material.” 

    For upcoming work, they’re planning to explore giving STEGO a bit more flexibility than just labeling pixels into a fixed number of classes as things in the real world can sometimes be multiple things at the same time (like “food”, “plant” and “fruit”). The authors hope this will give the algorithm room for uncertainty, trade-offs, and more abstract thinking.

    “In making a general tool for understanding potentially complicated datasets, we hope that this type of an algorithm can automate the scientific process of object discovery from images. There’s a lot of different domains where human labeling would be prohibitively expensive, or humans simply don’t even know the specific structure, like in certain biological and astrophysical domains. We hope that future work enables application to a very broad scope of datasets. Since you don’t need any human labels, we can now start to apply ML tools more broadly,” says Hamilton.

    “STEGO is simple, elegant, and very effective. I consider unsupervised segmentation to be a benchmark for progress in image understanding, and a very difficult problem. The research community has made terrific progress in unsupervised image understanding with the adoption of transformer architectures,” says Andrea Vedaldi, professor of computer vision and machine learning and a co-lead of the Visual Geometry Group at the engineering science department of the University of Oxford. “This research provides perhaps the most direct and effective demonstration of this progress on unsupervised segmentation.” 

    Hamilton wrote the paper alongside MIT CSAIL PhD student Zhoutong Zhang, Assistant Professor Bharath Hariharan of Cornell University, Associate Professor Noah Snavely of Cornell Tech, and MIT professor William T. Freeman. They will present the paper at the 2022 International Conference on Learning Representations (ICLR).  More

  • in

    Looking forward to forecast the risks of a changing climate

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the third in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    Extreme weather events that were once considered rare have become noticeably less so, from intensifying hurricane activity in the North Atlantic to wildfires generating massive clouds of ozone-damaging smoke. But current climate models are unprepared when it comes to estimating the risk that these increasingly extreme events pose — and without adequate modeling, governments are left unable to take necessary precautions to protect their communities.

    MIT Department of Earth, Atmospheric and Planetary Science (EAPS) Professor Paul O’Gorman researches this trend by studying how climate affects the atmosphere and incorporating what he learns into climate models to improve their accuracy. One particular focus for O’Gorman has been changes in extreme precipitation and midlatitude storms that hit areas like New England.

    “These extreme events are having a lot of impact, but they’re also difficult to model or study,” he says. Seeing the pressing need for better climate models that can be used to develop preparedness plans and climate change mitigation strategies, O’Gorman and collaborators Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in EAPS, and Miho Mazereeuw, associate professor in MIT’s Department of Architecture, are leading an interdisciplinary group of scientists, engineers, and designers to tackle this problem with their MIT Climate Grand Challenges flagship project, “Preparing for a new world of weather and climate extremes.”

    “We know already from observations and from climate model predictions that weather and climate extremes are changing and will change more,” O’Gorman says. “The grand challenge is preparing for those changing extremes.”

    Their proposal is one of five flagship projects recently announced by the MIT Climate Grand Challenges initiative — an Institute-wide effort catalyzing novel research and engineering innovations to address the climate crisis. Selected from a field of almost 100 submissions, the team will receive additional funding and exposure to help accelerate and scale their project goals. Other MIT collaborators on the proposal include researchers from the School of Engineering, the School of Architecture and Planning, the Office of Sustainability, the Center for Global Change Science, and the Institute for Data, Systems and Society.

    Weather risk modeling

    Fifteen years ago, Kerry Emanuel developed a simple hurricane model. It was based on physics equations, rather than statistics, and could run in real time, making it useful for modeling risk assessment. Emanuel wondered if similar models could be used for long-term risk assessment of other things, such as changes in extreme weather because of climate change.

    “I discovered, somewhat to my surprise and dismay, that almost all extant estimates of long-term weather risks in the United States are based not on physical models, but on historical statistics of the hazards,” says Emanuel. “The problem with relying on historical records is that they’re too short; while they can help estimate common events, they don’t contain enough information to make predictions for more rare events.”

    Another limitation of weather risk models which rely heavily on statistics: They have a built-in assumption that the climate is static.

    “Historical records rely on the climate at the time they were recorded; they can’t say anything about how hurricanes grow in a warmer climate,” says Emanuel. The models rely on fixed relationships between events; they assume that hurricane activity will stay the same, even while science is showing that warmer temperatures will most likely push typical hurricane activity beyond the tropics and into a much wider band of latitudes.

    As a flagship project, the goal is to eliminate this reliance on the historical record by emphasizing physical principles (e.g., the laws of thermodynamics and fluid mechanics) in next-generation models. The downside to this is that there are many variables that have to be included. Not only are there planetary-scale systems to consider, such as the global circulation of the atmosphere, but there are also small-scale, extremely localized events, like thunderstorms, that influence predictive outcomes.

    Trying to compute all of these at once is costly and time-consuming — and the results often can’t tell you the risk in a specific location. But there is a way to correct for this: “What’s done is to use a global model, and then use a method called downscaling, which tries to infer what would happen on very small scales that aren’t properly resolved by the global model,” explains O’Gorman. The team hopes to improve downscaling techniques so that they can be used to calculate the risk of very rare but impactful weather events.

    Global climate models, or general circulation models (GCMs), Emanuel explains, are constructed a bit like a jungle gym. Like the playground bars, the Earth is sectioned in an interconnected three-dimensional framework — only it’s divided 100 to 200 square kilometers at a time. Each node comprises a set of computations for characteristics like wind, rainfall, atmospheric pressure, and temperature within its bounds; the outputs of each node are connected to its neighbor. This framework is useful for creating a big picture idea of Earth’s climate system, but if you tried to zoom in on a specific location — like, say, to see what’s happening in Miami or Mumbai — the connecting nodes are too far apart to make predictions on anything specific to those areas.

    Scientists work around this problem by using downscaling. They use the same blueprint of the jungle gym, but within the nodes they weave a mesh of smaller features, incorporating equations for things like topography and vegetation or regional meteorological models to fill in the blanks. By creating a finer mesh over smaller areas they can predict local effects without needing to run the entire global model.

    Of course, even this finer-resolution solution has its trade-offs. While we might be able to gain a clearer picture of what’s happening in a specific region by nesting models within models, it can still make for a computing challenge to crunch all that data at once, with the trade-off being expense and time, or predictions that are limited to shorter windows of duration — where GCMs can be run considering decades or centuries, a particularly complex local model may be restricted to predictions on timescales of just a few years at a time.

    “I’m afraid that most of the downscaling at present is brute force, but I think there’s room to do it in better ways,” says Emanuel, who sees the problem of finding new and novel methods of achieving this goal as an intellectual challenge. “I hope that through the Grand Challenges project we might be able to get students, postdocs, and others interested in doing this in a very creative way.”

    Adapting to weather extremes for cities and renewable energy

    Improving climate modeling is more than a scientific exercise in creativity, however. There’s a very real application for models that can accurately forecast risk in localized regions.

    Another problem is that progress in climate modeling has not kept up with the need for climate mitigation plans, especially in some of the most vulnerable communities around the globe.

    “It is critical for stakeholders to have access to this data for their own decision-making process. Every community is composed of a diverse population with diverse needs, and each locality is affected by extreme weather events in unique ways,” says Mazereeuw, the director of the MIT Urban Risk Lab. 

    A key piece of the team’s project is building on partnerships the Urban Risk Lab has developed with several cities to test their models once they have a usable product up and running. The cities were selected based on their vulnerability to increasing extreme weather events, such as tropical cyclones in Broward County, Florida, and Toa Baja, Puerto Rico, and extratropical storms in Boston, Massachusetts, and Cape Town, South Africa.

    In their proposal, the team outlines a variety of deliverables that the cities can ultimately use in their climate change preparations, with ideas such as online interactive platforms and workshops with stakeholders — such as local governments, developers, nonprofits, and residents — to learn directly what specific tools they need for their local communities. By doing so, they can craft plans addressing different scenarios in their region, involving events such as sea-level rise or heat waves, while also providing information and means of developing adaptation strategies for infrastructure under these conditions that will be the most effective and efficient for them.

    “We are acutely aware of the inequity of resources both in mitigating impacts and recovering from disasters. Working with diverse communities through workshops allows us to engage a lot of people, listen, discuss, and collaboratively design solutions,” says Mazereeuw.

    By the end of five years, the team is hoping that they’ll have better risk assessment and preparedness tool kits, not just for the cities that they’re partnering with, but for others as well.

    “MIT is well-positioned to make progress in this area,” says O’Gorman, “and I think it’s an important problem where we can make a difference.” More

  • in

    Frequent encounters build familiarity

    Do better spatial networks make for better neighbors? There is evidence that they do, according to Paige Bollen, a sixth-year political science graduate student at MIT. The networks Bollen works with are not virtual but physical, part of the built environment in which we are all embedded. Her research on urban spaces suggests that the routes bringing people together or keeping them apart factor significantly in whether individuals see each other as friend or foe.

    “We all live in networks of streets, and come across different types of people,” says Bollen. “Just passing by others provides information that informs our political and social views of the world.” In her doctoral research, Bollen is revealing how physical context matters in determining whether such ordinary encounters engender suspicion or even hostility, while others can lead to cooperation and tolerance.

    Through her in-depth studies mapping the movement of people in urban communities in Ghana and South Africa, Bollen is demonstrating that even in diverse communities, “when people repeatedly come into contact, even if that contact is casual, they can build understanding that can lead to cooperation and positive outcomes,” she says. “My argument is that frequent, casual contact, facilitated by street networks, can make people feel more comfortable with those unlike themselves,” she says.

    Mapping urban networks

    Bollen’s case for the benefits of casual contact emerged from her pursuit of several related questions: Why do people in urban areas who regard other ethnic groups with prejudice and economic envy nevertheless manage to collaborate for a collective good? How do you reduce fears that arise from differences? How do the configuration of space and the built environment influence contact patterns among people?

    While other social science research suggests that there are weak ties in ethnically mixed urban communities, with casual contact exacerbating hostility, Bollen noted that there were plenty of examples of “cooperation across ethnic divisions in ethnically mixed communities.” She absorbed the work of psychologist Stanley Milgram, whose 1972 research showed that strangers seen frequently in certain places become familiar — less anonymous or threatening. So she set out to understand precisely how “the built environment of a neighborhood interacts with its demography to create distinct patterns of contact between social groups.”

    With the support of MIT Global Diversity Lab and MIT GOV/LAB, Bollen set out to develop measures of intergroup contact in cities in Ghana and South Africa. She uses street network data to predict contact patterns based on features of the built environment and then combines these measures with mobility data on peoples’ actual movement.

    “I created a huge dataset for every intersection in these cities, to determine the central nodes where many people are passing through,” she says. She combined these datasets with census data to determine which social groups were most likely to use specific intersections based on their position in a particular street network. She mapped these measures of casual contact to outcomes, such as inter-ethnic cooperation in Ghana and voting behavior in South Africa.

    “My analysis [in Ghana] showed that in areas that are more ethnically heterogeneous and where there are more people passing through intersections, we find more interconnections among people and more cooperation within communities in community development efforts,” she says.

    In a related survey experiment conducted on Facebook with 1,200 subjects, Bollen asked Accra residents if they would help an unknown non-co-ethnic in need with a financial gift. She found that the likelihood of offering such help was strongly linked to the frequency of interactions. “Helping behavior occurred when the subjects believed they would see this person again, even when they did not know the person in need well,” says Bollen. “They figured if they helped, they could count on this person’s reciprocity in the future.”

    For Bollen, this was “a powerful gut check” for her hypothesis that “frequency builds familiarity, because frequency provides information and drives expectations, which means it can reduce uncertainty and fear of the other.”

    In research underway in South Africa, a nation increasingly dealing with anti-immigrant violence, Bollen is investigating whether frequency of contact reduces prejudice against foreigners. Using her detailed street maps, 1.1 billion unique geolocated cellphone pings, and election data, she finds that frequent contact opportunities with immigrants are associated with lower support for anti-immigrant party voting.    Passion for places and spaces

    Bollen never anticipated becoming a political scientist. The daughter of two academics, she was “bent on becoming a data scientist.” But she was also “always interested in why people behave in certain ways and how this influences macro trends.”

    As an undergraduate at Tufts University, she became interested in international affairs. But it was her 2013 fieldwork studying women-only carriages in Delhi, India’s metro system, that proved formative. “I interviewed women for a month, talking to them about how these cars enabled them to participate in public life,” she recalls. Another project involving informal transportation routes in Cape Town, South Africa, immersed her more deeply in the questions of people’s experience of public space. “I left college thinking about mobility and public space, and I discovered how much I love geographic information systems,” she says.

    A gig with the Commonwealth of Massachusetts to improve the 911 emergency service — updating and cleaning geolocations of addresses using Google Street View — further piqued her interest. “The job was tedious, but I realized you can really understand a place, and how people move around, from these images.” Bollen began thinking about a career in urban planning.

    Then a two-year stint as a researcher at MIT GOV/LAB brought Bollen firmly into the political science fold. Working with Lily Tsai, the Ford Professor of Political Science, on civil society partnerships in the developing world, Bollen realized that “political science wasn’t what I thought it was,” she says. “You could bring psychology, economics, and sociology into thinking about politics.” Her decision to join the doctoral program was simple: “I knew and loved the people I was with at MIT.”

    Bollen has not regretted that decision. “All the things I’ve been interested in are finally coming together in my dissertation,” she says. Due to the pandemic, questions involving space, mobility, and contact became sharper to her. “I shifted my research emphasis from asking people about inter-ethnic differences and inequality through surveys, to using contact and context information to measure these variables.”

    She sees a number of applications for her work, including working with civil society organizations in communities touched by ethnic or other frictions “to rethink what we know about contact, challenging some of the classic things we think we know.”

    As she moves into the final phases of her dissertation, which she hopes to publish as a book, Bollen also relishes teaching comparative politics to undergraduates. “There’s something so fun engaging with them, and making their arguments stronger,” she says. With the long process of earning a PhD, this helps her “enjoy what she is doing every single day.” More

  • in

    MIT Schwarzman College of Computing unveils Break Through Tech AI

    Aimed at driving diversity and inclusion in artificial intelligence, the MIT Stephen A. Schwarzman College of Computing is launching Break Through Tech AI, a new program to bridge the talent gap for women and underrepresented genders in AI positions in industry.

    Break Through Tech AI will provide skills-based training, industry-relevant portfolios, and mentoring to qualified undergraduate students in the Greater Boston area in order to position them more competitively for careers in data science, machine learning, and artificial intelligence. The free, 18-month program will also provide each student with a stipend for participation to lower the barrier for those typically unable to engage in an unpaid, extra-curricular educational opportunity.

    “Helping position students from diverse backgrounds to succeed in fields such as data science, machine learning, and artificial intelligence is critical for our society’s future,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “We look forward to working with students from across the Greater Boston area to provide them with skills and mentorship to help them find careers in this competitive and growing industry.”

    The college is collaborating with Break Through Tech — a national initiative launched by Cornell Tech in 2016 to increase the number of women and underrepresented groups graduating with degrees in computing — to host and administer the program locally. In addition to Boston, the inaugural artificial intelligence and machine learning program will be offered in two other metropolitan areas — one based in New York hosted by Cornell Tech and another in Los Angeles hosted by the University of California at Los Angeles Samueli School of Engineering.

    “Break Through Tech’s success at diversifying who is pursuing computer science degrees and careers has transformed lives and the industry,” says Judith Spitz, executive director of Break Through Tech. “With our new collaborators, we can apply our impactful model to drive inclusion and diversity in artificial intelligence.”

    The new program will kick off this summer at MIT with an eight-week, skills-based online course and in-person lab experience that teaches industry-relevant tools to build real-world AI solutions. Students will learn how to analyze datasets and use several common machine learning libraries to build, train, and implement their own ML models in a business context.

    Following the summer course, students will be matched with machine-learning challenge projects for which they will convene monthly at MIT and work in teams to build solutions and collaborate with an industry advisor or mentor throughout the academic year, resulting in a portfolio of resume-quality work. The participants will also be paired with young professionals in the field to help build their network, prepare their portfolio, practice for interviews, and cultivate workplace skills.

    “Leveraging the college’s strong partnership with industry, Break Through AI will offer unique opportunities to students that will enhance their portfolio in machine learning and AI,” says Asu Ozdaglar, deputy dean of academics of the MIT Schwarzman College of Computing and head of the Department of Electrical Engineering and Computer Science. Ozdaglar, who will be the MIT faculty director of Break Through Tech AI, adds: “The college is committed to making computing inclusive and accessible for all. We’re thrilled to host this program at MIT for the Greater Boston area and to do what we can to help increase diversity in computing fields.”

    Break Through Tech AI is part of the MIT Schwarzman College of Computing’s focus to advance diversity, equity, and inclusion in computing. The college aims to improve and create programs and activities that broaden participation in computing classes and degree programs, increase the diversity of top faculty candidates in computing fields, and ensure that faculty search and graduate admissions processes have diverse slates of candidates and interviews.

    “By engaging in activities like Break Through Tech AI that work to improve the climate for underrepresented groups, we’re taking an important step toward creating more welcoming environments where all members can innovate and thrive,” says Alana Anderson, assistant dean for diversity, equity and inclusion for the Schwarzman College of Computing. More

  • in

    Computing our climate future

    On Monday, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the first in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    With improvements to computer processing power and an increased understanding of the physical equations governing the Earth’s climate, scientists are continually working to refine climate models and improve their predictive power. But the tools they’re refining were originally conceived decades ago with only scientists in mind. When it comes to developing tangible climate action plans, these models remain inscrutable to the policymakers, public safety officials, civil engineers, and community organizers who need their predictive insight most.

    “What you end up having is a gap between what’s typically used in practice, and the real cutting-edge science,” says Noelle Selin, a professor in the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences (EAPS), and co-lead with Professor Raffaele Ferrari on the MIT Climate Grand Challenges flagship project “Bringing Computation to the Climate Crisis.” “How can we use new computational techniques, new understandings, new ways of thinking about modeling, to really bridge that gap between state-of-the-art scientific advances and modeling, and people who are actually needing to use these models?”

    Using this as a driving question, the team won’t just be trying to refine current climate models, they’re building a new one from the ground up.

    This kind of game-changing advancement is exactly what the MIT Climate Grand Challenges is looking for, which is why the proposal has been named one of the five flagship projects in the ambitious Institute-wide program aimed at tackling the climate crisis. The proposal, which was selected from 100 submissions and was among 27 finalists, will receive additional funding and support to further their goal of reimagining the climate modeling system. It also brings together contributors from across the Institute, including the MIT Schwarzman College of Computing, the School of Engineering, and the Sloan School of Management.

    When it comes to pursuing high-impact climate solutions that communities around the world can use, “it’s great to do it at MIT,” says Ferrari, EAPS Cecil and Ida Green Professor of Oceanography. “You’re not going to find many places in the world where you have the cutting-edge climate science, the cutting-edge computer science, and the cutting-edge policy science experts that we need to work together.”

    The climate model of the future

    The proposal builds on work that Ferrari began three years ago as part of a joint project with Caltech, the Naval Postgraduate School, and NASA’s Jet Propulsion Lab. Called the Climate Modeling Alliance (CliMA), the consortium of scientists, engineers, and applied mathematicians is constructing a climate model capable of more accurately projecting future changes in critical variables, such as clouds in the atmosphere and turbulence in the ocean, with uncertainties at least half the size of those in existing models.

    To do this, however, requires a new approach. For one thing, current models are too coarse in resolution — at the 100-to-200-kilometer scale — to resolve small-scale processes like cloud cover, rainfall, and sea ice extent. But also, explains Ferrari, part of this limitation in resolution is due to the fundamental architecture of the models themselves. The languages most global climate models are coded in were first created back in the 1960s and ’70s, largely by scientists for scientists. Since then, advances in computing driven by the corporate world and computer gaming have given rise to dynamic new computer languages, powerful graphics processing units, and machine learning.

    For climate models to take full advantage of these advancements, there’s only one option: starting over with a modern, more flexible language. Written in Julia, a part of Julialab’s Scientific Machine Learning technology, and spearheaded by Alan Edelman, a professor of applied mathematics in MIT’s Department of Mathematics, CliMA will be able to harness far more data than the current models can handle.

    “It’s been real fun finally working with people in computer science here at MIT,” Ferrari says. “Before it was impossible, because traditional climate models are in a language their students can’t even read.”

    The result is what’s being called the “Earth digital twin,” a climate model that can simulate global conditions on a large scale. This on its own is an impressive feat, but the team wants to take this a step further with their proposal.

    “We want to take this large-scale model and create what we call an ‘emulator’ that is only predicting a set of variables of interest, but it’s been trained on the large-scale model,” Ferrari explains. Emulators are not new technology, but what is new is that these emulators, being referred to as the “Earth digital cousins,” will take advantage of machine learning.

    “Now we know how to train a model if we have enough data to train them on,” says Ferrari. Machine learning for projects like this has only become possible in recent years as more observational data become available, along with improved computer processing power. The goal is to create smaller, more localized models by training them using the Earth digital twin. Doing so will save time and money, which is key if the digital cousins are going to be usable for stakeholders, like local governments and private-sector developers.

    Adaptable predictions for average stakeholders

    When it comes to setting climate-informed policy, stakeholders need to understand the probability of an outcome within their own regions — in the same way that you would prepare for a hike differently if there’s a 10 percent chance of rain versus a 90 percent chance. The smaller Earth digital cousin models will be able to do things the larger model can’t do, like simulate local regions in real time and provide a wider range of probabilistic scenarios.

    “Right now, if you wanted to use output from a global climate model, you usually would have to use output that’s designed for general use,” says Selin, who is also the director of the MIT Technology and Policy Program. With the project, the team can take end-user needs into account from the very beginning while also incorporating their feedback and suggestions into the models, helping to “democratize the idea of running these climate models,” as she puts it. Doing so means building an interactive interface that eventually will give users the ability to change input values and run the new simulations in real time. The team hopes that, eventually, the Earth digital cousins could run on something as ubiquitous as a smartphone, although developments like that are currently beyond the scope of the project.

    The next thing the team will work on is building connections with stakeholders. Through participation of other MIT groups, such as the Joint Program on the Science and Policy of Global Change and the Climate and Sustainability Consortium, they hope to work closely with policymakers, public safety officials, and urban planners to give them predictive tools tailored to their needs that can provide actionable outputs important for planning. Faced with rising sea levels, for example, coastal cities could better visualize the threat and make informed decisions about infrastructure development and disaster preparedness; communities in drought-prone regions could develop long-term civil planning with an emphasis on water conservation and wildfire resistance.

    “We want to make the modeling and analysis process faster so people can get more direct and useful feedback for near-term decisions,” she says.

    The final piece of the challenge is to incentivize students now so that they can join the project and make a difference. Ferrari has already had luck garnering student interest after co-teaching a class with Edelman and seeing the enthusiasm students have about computer science and climate solutions.

    “We’re intending in this project to build a climate model of the future,” says Selin. “So it seems really appropriate that we would also train the builders of that climate model.” More